Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10993-10998, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35333724

RESUMO

Memory-augmented neural networks enhance a neural network with an external key-value (KV) memory whose complexity is typically dominated by the number of support vectors in the key memory. We propose a generalized KV memory that decouples its dimension from the number of support vectors by introducing a free parameter that can arbitrarily add or remove redundancy to the key memory representation. In effect, it provides an additional degree of freedom to flexibly control the tradeoff between robustness and the resources required to store and compute the generalized KV memory. This is particularly useful for realizing the key memory on in-memory computing hardware where it exploits nonideal, but extremely efficient nonvolatile memory devices for dense storage and computation. Experimental results show that adapting this parameter on demand effectively mitigates up to 44% nonidealities, at equal accuracy and number of devices, without any need for neural network retraining.

2.
IEEE Trans Biomed Circuits Syst ; 16(4): 524-534, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35776812

RESUMO

Hyperdimensional computing (HDC) is a brain-inspired computing paradigm that operates on pseudo-random hypervectors to perform high-accuracy classifications for biomedical applications. The energy efficiency of prior HDC processors for this computationally minimal algorithm is dominated by costly hypervector memory storage, which grows linearly with the number of sensors. To address this, the memory is replaced with a light-weight cellular automaton for on-the-fly hypervector generation. The use of this technique is explored in conjunction with vector folding for various real-time classification latencies in post-layout simulation on an emotion recognition dataset with 200 channels. The proposed architecture achieves 39.1 nJ/prediction; a 4.9× energy efficiency improvement, 9.5× per channel, over the state-of-the-art HDC processor. At maximum throughput, the architecture achieves a 10.7× improvement, 33.5× per channel. An optimized support vector machine (SVM) processor is designed in this work for the same use-case. HDC is 9.5× more energy-efficient than the SVM, paving the way for it to become the paradigm of choice for high-accuracy, on-board biosignal classification.


Assuntos
Algoritmos , Máquina de Vetores de Suporte , Encéfalo , Simulação por Computador
3.
Brain Inform ; 9(1): 14, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35759153

RESUMO

In this paper, a hardware-optimized approach to emotion recognition based on the efficient brain-inspired hyperdimensional computing (HDC) paradigm is proposed. Emotion recognition provides valuable information for human-computer interactions; however, the large number of input channels (> 200) and modalities (> 3 ) involved in emotion recognition are significantly expensive from a memory perspective. To address this, methods for memory reduction and optimization are proposed, including a novel approach that takes advantage of the combinatorial nature of the encoding process, and an elementary cellular automaton. HDC with early sensor fusion is implemented alongside the proposed techniques achieving two-class multi-modal classification accuracies of > 76% for valence and > 73% for arousal on the multi-modal AMIGOS and DEAP data sets, almost always better than state of the art. The required vector storage is seamlessly reduced by 98% and the frequency of vector requests by at least 1/5. The results demonstrate the potential of efficient hyperdimensional computing for low-power, multi-channeled emotion recognition tasks.

4.
Proc IEEE Inst Electr Electron Eng ; 110(10): 1538-1571, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868615

RESUMO

This article reviews recent progress in the development of the computing framework Vector Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, emerging hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the field-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on high-dimensional vectors that can support all data structures and manipulations relevant to modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, "computing in superposition," which sets it apart from conventional computing. It also opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. We sketch ways of demonstrating that Vector Symbolic Architectures are computationally universal. We see them acting as a framework for computing with distributed representations that can play a role of an abstraction layer for emerging computing hardware. This article serves as a reference for computer architects by illustrating the philosophy behind Vector Symbolic Architectures, techniques of distributed computing with them, and their relevance to emerging computing hardware, such as neuromorphic computing.

5.
IEEE J Biomed Health Inform ; 25(3): 623-633, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32749974

RESUMO

The increasing penetration of wearable and implantable devices necessitates energy-efficient and robust ways of connecting them to each other and to the cloud. However, the wireless channel around the human body poses unique challenges such as a high and variable path-loss caused by frequent changes in the relative node positions as well as the surrounding environment. An adaptive wireless body area network (WBAN) scheme is presented that reconfigures the network by learning from body kinematics and biosignals. It has very low overhead since these signals are already captured by the WBAN sensor nodes to support their basic functionality. Periodic channel fluctuations in activities like walking can be exploited by reusing accelerometer data and scheduling packet transmissions at optimal times. Network states can be predicted based on changes in observed biosignals to reconfigure the network parameters in real time. A realistic body channel emulator that evaluates the path-loss for everyday human activities was developed to assess the efficacy of the proposed techniques. Simulation results show up to 41% improvement in packet delivery ratio (PDR) and up to 27% reduction in power consumption by intelligent scheduling at lower transmission power levels. Moreover, experimental results on a custom test-bed demonstrate an average PDR increase of 20% and 18% when using our adaptive EMG- and heart-rate-based transmission power control methods, respectively. The channel emulator and simulation code is made publicly available at https://github.com/a-moin/wban-pathloss.


Assuntos
Redes de Comunicação de Computadores , Tecnologia sem Fio , Algoritmos , Fenômenos Biomecânicos , Humanos , Caminhada
6.
Sci Rep ; 10(1): 16543, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024141

RESUMO

Sensor data can be wirelessly transmitted from simple, battery-less tags using Radio Frequency Identification (RFID). RFID sensor tags consist of an antenna, a radio frequency integrated circuit chip (RFIC), and at least one sensor. An ideal tag can communicate over a long distance and be seamlessly integrated onto everyday objects. However, miniaturized antenna designs often have lower performance. Here we demonstrate compact, flexible sensor tags with read range comparable to that of conventional rigid tags. We compare fabrication techniques for flexible antennas and demonstrate that screen and stencil printing are both suitable for fabricating antennas; these different techniques are most useful at different points in the design cycle. We characterize two versions of flexible, screen printed folded dipoles and a meandered monopole operating in the 915 MHz band. Finally, we use these antennas to create passive sensor tags and demonstrate over the air communication of sensor data. These tags could be used to form a network of printed, flexible, passive, interactive sensor tags.

7.
Nat Biomed Eng ; 3(1): 15-26, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932068

RESUMO

Closed-loop neuromodulation systems aim to treat a variety of neurological conditions by delivering and adjusting therapeutic electrical stimulation in response to a patient's neural state, recorded in real time. Existing systems are limited by low channel counts, lack of algorithmic flexibility, and the distortion of recorded signals by large and persistent stimulation artefacts. Here, we describe an artefact-free wireless neuromodulation device that enables research applications requiring high-throughput data streaming, low-latency biosignal processing, and simultaneous sensing and stimulation. The device is a miniaturized neural interface capable of closed-loop recording and stimulation on 128 channels, with on-board processing to fully cancel stimulation artefacts. In addition, it can detect neural biomarkers and automatically adjust stimulation parameters in closed-loop mode. In a behaving non-human primate, the device enabled long-term recordings of local field potentials and the real-time cancellation of stimulation artefacts, as well as closed-loop stimulation to disrupt movement preparatory activity during a delayed-reach task. The neuromodulation device may help advance neuroscientific discovery and preclinical investigations of stimulation-based therapeutic interventions.


Assuntos
Algoritmos , Artefatos , Estimulação Elétrica/instrumentação , Tecnologia sem Fio , Potenciais de Ação , Animais , Biomarcadores/metabolismo , Encéfalo/fisiologia , Desenho Assistido por Computador , Macaca mulatta , Masculino , Processamento de Sinais Assistido por Computador , Análise e Desempenho de Tarefas
8.
Sensors (Basel) ; 18(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486453

RESUMO

While there exists a wide variety of radio frequency (RF) technologies amenable for usage in Wireless Body Area Networks (WBANs), which have been studied separately before, it is currently still unclear how their performance compares in true on-body scenarios. In this paper, a single reference on-body scenario-that is, propagation along the arm-is used to experimentally compare six distinct RF technologies (between 420 MHz and 2.4 GHz) in terms of path loss. To further quantify on-body path loss, measurements for five different on-body scenarios are presented as well. To compensate for the effect of often large path losses, two mitigation strategies to (dynamically) improve on-body links are introduced and experimentally verified: beam steering using a phased array, and usage of on-body RF repeaters. The results of this study can serve as a tool for WBAN designers to aid in the selection of the right RF frequency and technology for their application.

9.
IEEE Trans Neural Netw Learn Syst ; 29(12): 5880-5898, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29993669

RESUMO

Hyperdimensional (HD) computing is a promising paradigm for future intelligent electronic appliances operating at low power. This paper discusses tradeoffs of selecting parameters of binary HD representations when applied to pattern recognition tasks. Particular design choices include density of representations and strategies for mapping data from the original representation. It is demonstrated that for the considered pattern recognition tasks (using synthetic and real-world data) both sparse and dense representations behave nearly identically. This paper also discusses implementation peculiarities which may favor one type of representations over the other. Finally, the capacity of representations of various densities is discussed.

10.
Neuron ; 91(3): 529-39, 2016 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-27497221

RESUMO

The emerging field of bioelectronic medicine seeks methods for deciphering and modulating electrophysiological activity in the body to attain therapeutic effects at target organs. Current approaches to interfacing with peripheral nerves and muscles rely heavily on wires, creating problems for chronic use, while emerging wireless approaches lack the size scalability necessary to interrogate small-diameter nerves. Furthermore, conventional electrode-based technologies lack the capability to record from nerves with high spatial resolution or to record independently from many discrete sites within a nerve bundle. Here, we demonstrate neural dust, a wireless and scalable ultrasonic backscatter system for powering and communicating with implanted bioelectronics. We show that ultrasound is effective at delivering power to mm-scale devices in tissue; likewise, passive, battery-less communication using backscatter enables high-fidelity transmission of electromyogram (EMG) and electroneurogram (ENG) signals from anesthetized rats. These results highlight the potential for an ultrasound-based neural interface system for advancing future bioelectronics-based therapies.


Assuntos
Eletromiografia/instrumentação , Eletrofisiologia/instrumentação , Sistema Nervoso Periférico/fisiologia , Ondas Ultrassônicas , Tecnologia sem Fio/instrumentação , Animais , Próteses e Implantes , Ratos , Tecnologia de Sensoriamento Remoto/métodos
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 4471-4474, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269271

RESUMO

A distributed, modular, intelligent, and efficient neuromodulation device, called OMNI, is presented. It supports closed-loop recording and stimulation on 256 channels from up to 4 physically distinct neuromodulation modules placed in any configuration around the brain, hence offering the capability of addressing neural disorders that are presented at the network level. The specific focus of this paper is the communication and power distribution network that enables the modular and distributed nature of the device.


Assuntos
Encéfalo/fisiologia , Terapia por Estimulação Elétrica/instrumentação , Redes de Comunicação de Computadores , Fontes de Energia Elétrica , Desenho de Equipamento , Humanos
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 2673-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736842

RESUMO

In this paper, we present an ultrasonic beamforming system capable of interrogating individual implantable sensors via backscatter in a distributed, ultrasound-based recording platform known as Neural Dust [1]. A custom ASIC drives a 7 × 2 PZT transducer array with 3 cycles of 32V square wave with a specific programmable time delay to focus the beam at the 800mm neural dust mote placed 50mm away. The measured acoustic-to-electrical conversion efficiency of the receive mote in water is 0.12% and the overall system delivers 26.3% of the power from the 1.8V power supply to the transducer drive output, consumes 0.75µJ in each transmit phase, and has a 0.5% change in the backscatter per volt applied to the input of the backscatter circuit. Further miniaturization of both the transmit array and the receive mote can pave the way for a wearable, chronic sensing and neuromodulation system.


Assuntos
Ultrassonografia , Desenho de Equipamento , Miniaturização , Próteses e Implantes , Transdutores
13.
J Neurosci Methods ; 244: 114-22, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25109901

RESUMO

A major hurdle in brain-machine interfaces (BMI) is the lack of an implantable neural interface system that remains viable for a substantial fraction of the user's lifetime. Recently, sub-mm implantable, wireless electromagnetic (EM) neural interfaces have been demonstrated in an effort to extend system longevity. However, EM systems do not scale down in size well due to the severe inefficiency of coupling radio-waves at those scales within tissue. This paper explores fundamental system design trade-offs as well as size, power, and bandwidth scaling limits of neural recording systems built from low-power electronics coupled with ultrasonic power delivery and backscatter communication. Such systems will require two fundamental technology innovations: (1) 10-100 µm scale, free-floating, independent sensor nodes, or neural dust, that detect and report local extracellular electrophysiological data via ultrasonic backscattering and (2) a sub-cranial ultrasonic interrogator that establishes power and communication links with the neural dust. We provide experimental verification that the predicted scaling effects follow theory; (127 µm)(3) neural dust motes immersed in water 3 cm from the interrogator couple with 0.002064% power transfer efficiency and 0.04246 ppm backscatter, resulting in a maximum received power of ∼0.5 µW with ∼1 nW of change in backscatter power with neural activity. The high efficiency of ultrasonic transmission can enable the scaling of the sensing nodes down to 10s of micrometer. We conclude with a brief discussion of the application of neural dust for both central and peripheral nervous system recordings, and perspectives on future research directions.


Assuntos
Córtex Cerebral/fisiologia , Modelos Biológicos , Ultrassom , Interface Usuário-Computador , Interfaces Cérebro-Computador , Humanos , Próteses e Implantes , Reprodutibilidade dos Testes , Tecnologia sem Fio
14.
Artigo em Inglês | MEDLINE | ID: mdl-25570529

RESUMO

In this paper, we examine the use of beamforming techniques to interrogate a multitude of neural implants in a distributed, ultrasound-based intra-cortical recording platform known as Neural Dust. We propose a general framework to analyze system design tradeoffs in the ultrasonic beamformer that extracts neural signals from modulated ultrasound waves that are backscattered by free-floating neural dust (ND) motes. Simulations indicate that high-resolution linearly-constrained minimum variance beamforming sufficiently suppresses interference from unselected ND motes and can be incorporated into the ND-based cortical recording system.


Assuntos
Córtex Cerebral/fisiologia , Algoritmos , Simulação por Computador , Eletrodos Implantados , Humanos , Modelos Neurológicos , Transdutores
15.
Front Comput Neurosci ; 7: 137, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24187539

RESUMO

Simultaneously measuring the activities of all neurons in a mammalian brain at millisecond resolution is a challenge beyond the limits of existing techniques in neuroscience. Entirely new approaches may be required, motivating an analysis of the fundamental physical constraints on the problem. We outline the physical principles governing brain activity mapping using optical, electrical, magnetic resonance, and molecular modalities of neural recording. Focusing on the mouse brain, we analyze the scalability of each method, concentrating on the limitations imposed by spatiotemporal resolution, energy dissipation, and volume displacement. Based on this analysis, all existing approaches require orders of magnitude improvement in key parameters. Electrical recording is limited by the low multiplexing capacity of electrodes and their lack of intrinsic spatial resolution, optical methods are constrained by the scattering of visible light in brain tissue, magnetic resonance is hindered by the diffusion and relaxation timescales of water protons, and the implementation of molecular recording is complicated by the stochastic kinetics of enzymes. Understanding the physical limits of brain activity mapping may provide insight into opportunities for novel solutions. For example, unconventional methods for delivering electrodes may enable unprecedented numbers of recording sites, embedded optical devices could allow optical detectors to be placed within a few scattering lengths of the measured neurons, and new classes of molecularly engineered sensors might obviate cumbersome hardware architectures. We also study the physics of powering and communicating with microscale devices embedded in brain tissue and find that, while radio-frequency electromagnetic data transmission suffers from a severe power-bandwidth tradeoff, communication via infrared light or ultrasound may allow high data rates due to the possibility of spatial multiplexing. The use of embedded local recording and wireless data transmission would only be viable, however, given major improvements to the power efficiency of microelectronic devices.

16.
Artigo em Inglês | MEDLINE | ID: mdl-24109670

RESUMO

We present a method for decreasing the duration of artifacts present during intra-cortical microstimulation (ICMS) recordings by using techniques developed for digital communications. We replace the traditional monophasic or biphasic current stimulation pulse with a patterned pulse stream produced by a Zero Forcing Equalizer (ZFE) filter after characterizing the artifact as a communications channel. The results find that using the ZFE stimulus has the potential to reduce artifact width by more than 70%. Considerations for the hardware implementation of the equalizer are presented.


Assuntos
Estimulação Encefálica Profunda , Animais , Artefatos , Interfaces Cérebro-Computador , Humanos , Microeletrodos , Ratos
17.
Artigo em Inglês | MEDLINE | ID: mdl-21096382

RESUMO

This paper discusses an approach to modeling and characterizing wireless channel properties for mm-size neural implants. Full-wave electromagnetic simulation was employed to model signal propagation characteristics in biological materials. Animal tests were carried out, proving the validity of the simulation model over a wide range of frequency from 100MHz to 6GHz. Finally, effects of variability and uncertainty in human anatomy and dielectric properties of tissues on these radio links are explored.


Assuntos
Modelos Biológicos , Próteses e Implantes , Ondas de Rádio , Telemetria/instrumentação , Telemetria/métodos , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Ratos , Espalhamento de Radiação , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...