Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109576, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38638836

RESUMO

AML is characterized by mutations in genes associated with growth regulation such as internal tandem duplications (ITD) in the receptor kinase FLT3. Inhibitors targeting FLT3 (FLT3i) are being used to treat patients with FLT3-ITD+ but most relapse and become resistant. To elucidate the resistance mechanism, we compared the gene regulatory networks (GRNs) of leukemic cells from patients before and after relapse, which revealed that the GRNs of drug-responsive patients were altered by rewiring their AP-1-RUNX1 axis. Moreover, FLT3i induces the upregulation of signaling genes, and we show that multiple cytokines, including interleukin-3 (IL-3), can overcome FLT3 inhibition and send cells back into cycle. FLT3i leads to loss of AP-1 and RUNX1 chromatin binding, which is counteracted by IL-3. However, cytokine-mediated drug resistance can be overcome by a pan-RAS inhibitor. We show that cytokines instruct AML growth via the transcriptional regulators AP-1 and RUNX1 and that pan-RAS drugs bypass this barrier.

2.
Bio Protoc ; 12(4): e4324, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35340285

RESUMO

Targeting hard-to-drug proteins, such as proteins functioning by protein-protein interactions (PPIs) with small molecules, is difficult because of the lack of well-defined pockets. Fragment or computational-based methods are usually employed for the discovery of such compounds, but no generic method is available to quickly identify small molecules interfering with PPIs. Here, we provide a protocol describing a generic method to discover small molecules inhibiting the interaction between an intracellular antibody and its target, in particular for proteins that are hard to make in recombinant form. This protocol reports a versatile and generic method that can be applied to any target/intracellular antibody. Because it is a cell-based assay, it identifies chemical matters that are already displaying advantageous cell permeability properties. Graphic abstract: Cell-based intracellular antibody-guided small molecule screening.

3.
Leuk Res ; 108: 106626, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34062328

RESUMO

Refractory T cell acute leukaemias that no longer respond to treatment would benefit from new modalities that target T cell-specific surface proteins. T cell associated surface proteins (the surfaceome) offer possible therapy targets to reduce tumour burden but also target the leukaemia-initiating cells from which tumours recur. Recent studies of the T cell leukaemia surfaceome confirmed that CD7 is highly expressed in overt disease. We have used an anti-CD7 antibody drug conjugate (ADC) to show that the binding of antibody to surface CD7 protein results in rapid internalization of the antigen together with the ADC. As a consequence, cell killing was observed via induction of apoptosis and was dependent on cell surface CD7. The in vitro cytotoxic activity (EC50) of the anti-CD7 ADC on T cell acute leukaemia (T-ALL) cells Jurkat and KOPT-K1 was found to be in the range of 5-8 ng/mL. In a pre-clinical xenograft model of human tumour growth expressing CD7 antigen, growth was curtailed by a single dose of ADC. The data indicate that CD7 targeting ADCs may be developed into an important second stage therapy for T cell acute leukaemia, for refractory CD7-positive leukaemias and for subsets of acute myeloid leukaemia (AML) expressing CD7.


Assuntos
Anticorpos Monoclonais/química , Antígenos CD7/imunologia , Apoptose , Liberação Controlada de Fármacos , Imunoconjugados/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antígenos CD7/metabolismo , Proliferação de Células , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Immunol Methods ; 494: 113051, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33794223

RESUMO

The use of intracellular antibodies as templates to derive surrogate compounds is an important objective because intracellular antibodies can be employed initially for target validation in pre-clinical assays and subsequently employed in compound library screens. LMO2 is a T cell oncogenic protein activated in the majority of T cell acute leukaemias. We have used an inhibitory intracellular antibody fragment as a competitor in a small molecule library screen using competitive surface plasmon resonance (cSPR) to identify compounds that bind to LMO2. We selected four compounds that bind to LMO2 but not when the anti-LMO2 intracellular antibody fragment is bound to it. These findings further illustrate the value of intracellular antibodies in the initial stages of drug discovery campaigns and more generally antibodies, or antibody fragments, can be the starting point for chemical compound development as surrogates of the antibody combining site.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Neoplasias/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Proteínas com Domínio LIM/metabolismo , Leucemia de Células T/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T/metabolismo , Anticorpos/metabolismo , Ligação Competitiva , Células Cultivadas , Descoberta de Drogas , Humanos , Fragmentos de Imunoglobulinas/genética , Espaço Intracelular , Conformação Proteica , Bibliotecas de Moléculas Pequenas , Ressonância de Plasmônio de Superfície , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Linfócitos T/imunologia
5.
Sci Rep ; 11(1): 1712, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462327

RESUMO

Intracellular antibodies are valuable tools for target validation studies for clinical situations such as cancer. Recently we have shown that antibodies can be used for drug discovery in screening for chemical compounds surrogates by showing that compounds could be developed to the so-called undruggable RAS protein family. This method, called Antibody-derived compound (Abd) technology, employed intracellular antibodies binding to RAS in a competitive surface plasmon resonance chemical library screen. Success with this method requires a high affinity interaction between the antibody and the target. We now show that reduction in the affinity (dematuration) of the anti-active RAS antibody facilitates the screening of a chemical library using an in vitro AlphaScreen method. This identified active RAS specific-binding Abd compounds that inhibit the RAS-antibody interaction. One compound is shown to be a pan-RAS binder to KRAS, HRAS and NRAS-GTP proteins with a Kd of average 37 mM, offering the possibility of a new chemical series that interacts with RAS in the switch region where the intracellular antibody binds. This simple approach shows the druggability of RAS and is generally applicable to antibody-derived chemical library screening by affording flexibility through simple antibody affinity variation. This approach can be applied to find Abd compounds as surrogates of antibody-combining sites for novel drug development in a range of human diseases.


Assuntos
Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas ras/metabolismo , Anticorpos/genética , Anticorpos/imunologia , Anticorpos/metabolismo , Afinidade de Anticorpos , Regiões Determinantes de Complementaridade/química , Humanos , Cinética , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Ressonância de Plasmônio de Superfície , Proteínas ras/química , Proteínas ras/imunologia
6.
Nat Commun ; 11(1): 3233, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591521

RESUMO

Tumour-associated KRAS mutations are the most prevalent in the three RAS-family isoforms and involve many different amino-acids. Therefore, molecules able to interfere with mutant KRAS protein are potentially important for wide-ranging tumour therapy. We describe the engineering of two RAS degraders based on protein macromolecules (macrodrugs) fused to specific E3 ligases. A KRAS-specific DARPin fused to the VHL E3 ligase is compared to a pan-RAS intracellular single domain antibody (iDAb) fused to the UBOX domain of the CHIP E3 ligase. We demonstrate that while the KRAS-specific DARPin degrader induces specific proteolysis of both mutant and wild type KRAS, it only inhibits proliferation of cancer cells expressing mutant KRAS in vitro and in vivo. Pan-RAS protein degradation, however, affects proliferation irrespective of the RAS mutation. These data show that specific KRAS degradation is an important therapeutic strategy to affect tumours expressing any of the range of KRAS mutations.


Assuntos
Substâncias Macromoleculares/metabolismo , Proteínas Mutantes/metabolismo , Mutação/genética , Neoplasias/metabolismo , Proteólise , Proteínas ras/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos Nus , Domínios Proteicos , Engenharia de Proteínas , Transdução de Sinais
7.
Exp Hematol ; 85: 13-19, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32437911

RESUMO

Rearrangements involving the mixed lineage leukemia gene (MLL) are found in the majority of leukemias that develop within the first year of age, known as infant leukemias, and likely originate during prenatal life. MLL rearrangements are also present in about 10% of other pediatric and adult acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). These translocations and others occurring in early life are associated with a dismal prognosis compared with adult leukemias carrying the same translocations. This observation suggests that infant and adult leukemias are biologically distinct but the underlying molecular mechanisms for these differences are not understood. In this work, we induced the same MLL chromosomal translocation in the embryo at the time of fetal liver hematopoiesis and in the adult hematopoietic tissues to develop disease models in mice that recapitulate human infant and adult leukemias, respectively. We successfully obtained myeloid leukemia in adult mice after MLL-ENL recombination induction using the interferon inducible Mx1-Cre line. Using this same Cre line, we generated embryonic MLL-ENL leukemias, which were more aggressive than the corresponding adult leukemias. In conclusion, we have developed a novel MLL-ENL embryonic leukemia model in mice that can be used to study some aspects of infant leukemia ontogeny.


Assuntos
Proteínas de Ligação a DNA , Embrião de Mamíferos , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Neoplasias Experimentais , Proteínas de Fusão Oncogênica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/patologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Leucemia Mieloide Aguda/embriologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Experimentais/embriologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/embriologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
MAbs ; 12(1): 1752529, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32316838

RESUMO

The success of therapeutic antibodies is largely attributed for their exquisite specificity, homogeneity, and functionality. There is, however, a need to engineer antibodies to extend and enhance their potency. One parameter is functional affinity augmentation, since antibodies matured in vivo have a natural affinity threshold. Generation of multivalent antibodies is one option capable of surpassing this affinity threshold through increased avidity. In this study, we present a novel platform consisting of an array of multivalent antibody formats, termed Quads, generated using the self-assembling tetramerization domain from p53. We demonstrate the versatility of this tetramerization domain by engineering anti-tumor necrosis factor (TNF) Quads that exhibit major increases in binding potency and in neutralizing TNF-mediated cytotoxicity compared to parental anti-TNF molecules. Further, Quads are amenable to fusion with different binding domains, allowing generation of novel multivalent monospecific and bispecific formats. Quads are thus a novel group of molecules that can be engineered to yield potential therapeutics with novel modalities and potencies.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Engenharia de Proteínas/métodos , Multimerização Proteica/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Antígenos CD20/genética , Antígenos CD20/imunologia , Antígenos CD20/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/genética , Fragmentos de Imunoglobulinas/imunologia , Fragmentos de Imunoglobulinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
9.
ACS Appl Bio Mater ; 3(12): 8481-8495, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019618

RESUMO

Macromolecules such as antibodies and antibody fragments have been reported to interfere with intracellular targets, but their use is limited to delivery systems where expression is achieved from vectors such as plasmids or viruses. We have developed PEGylated nanoparticles of poly-lactic acid (PLA), including the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), which are functionalized with monoclonal anti-CD7, anti-CD53, or anti-GPR56 antibodies for receptor-mediated endocytic delivery into T-cell leukemia cell lines. Incorporation of DOTAP as the lipid component of the PLA nanoparticles enhanced the release of the immuno-nanoparticles from the endosomes into the cytosol compared to nanoparticles made from PLA alone. Systemic delivery of these anti-CD7 immuno-nanoparticles into humanized CD7 transgenic mice resulted in localization in the spleen, enhanced uptake into CD7-expressing splenocytes, and release of low amounts of reporter mRNA for translation. These functionalized polymer lipid nanoparticles are the basis for elaboration and optimization for realizing their potential in therapeutic applications to carry specific macromolecules such as mRNAs for translation into therapeutic proteins that can target intracellular proteins which mediate disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...