Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(19): 30797-30814, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37710615

RESUMO

Alignment is critical for efficient integration of photonic integrated circuits (PICs), and microelectromechanical systems (MEMS) actuators have shown potential to tackle this issue. In this work, we report MEMS positioning actuators designed with the ultimate goal of aligning silicon nitride (SiN) waveguides either to different outputs within a SiN chip or to active chips, such as lasers and semiconductor optical amplifiers. For the proof-of-concept, suspended SiN waveguides implemented on a silicon-on-insulator wafer were displaced horizontally in the direction of light propagation to close an initial gap of 6.92 µm and couple the light to fixed output waveguides located on a static section of the chip. With the gap closed, the suspended waveguides showed ∼ 345 nm out-of-plane misalignment with respect to the fixed waveguides. The suspended waveguides can be displaced laterally by more than ±2 µm. When the waveguides are aligned and the gap closed, an average loss of -1.6 ± 0.06 dB was achieved, whereas when the gap is closed with a ± 2 µm lateral displacement, a maximum average loss of ∼ -19.00 ± 0.62 dB was obtained. The performance of this positioner does not only pave the way for active chip alignment, but it could also be considered for optical switching applications.

2.
Micromachines (Basel) ; 14(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985106

RESUMO

Integrating microelectromechanical systems (MEMS) actuators with low-loss suspended silicon nitride waveguides enables the precise alignment of these waveguides to other photonic integrated circuits (PICs). This requires both in-plane and out-of-plane actuators to ensure high-precision optical alignment. However, most current out-of-plane electrostatic actuators are bulky, while electrothermal actuators consume high power. Thus, piezoelectric actuators, thanks to their moderate actuation voltages and low power consumption, could be used as alternatives. Furthermore, piezoelectric actuators can provide displacements in two opposite directions. This study presents a novel aluminum nitride-based out-of-plane piezoelectric MEMS actuator equipped with a capacitive sensing mechanism to track its displacement. This actuator could be integrated within PICs to align different chips. Prototypes of the device were tested over the range of ±60 V, where they provided upward and downward displacements, and achieved a total average out-of-plane displacement of 1.30 ± 0.04 µm. Capacitance measurement showed a linear relation with the displacement, where at -60 V, the average change in capacitance was found to be -13.10 ± 0.89 fF, whereas at 60 V the change was 11.09 ± 0.73 fF. This study also investigates the effect of the residual stress caused by the top metal electrode, on the linearity of the displacement-voltage relation. The simulation predicts that the prototype could be modified to accommodate waveguide routing above it without affecting its performance, and it could also incorporate in-plane lateral actuators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...