Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nanoscale Adv ; 5(9): 2413-2417, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143819

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inactivation of pH-dependent graphene oxide (GO) nanosheets is presented. The observed virus inactivation using an authentic virus (Delta variant) and different GO dispersions at pH 3, 7, and 11 suggests that the higher pH of the GO dispersion yields a better performance compared to that of GO at neutral or lower pH. The current findings can be ascribed to the pH-driven functional group change and the overall charge of GO, favorable for the attachment between GO nanosheets and virus particles.

3.
RSC Adv ; 12(14): 8632-8636, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35424816

RESUMO

Remarkably high mixed proton and electron conduction arising from oxidized single-wall carbon nanotubes at room temperature is demonstrated. The respective proton and electronic conductivities are 1.40 and 8.0 × 10-2 S cm-1 in the in-plane direction, and 3.1 × 10-2 and 1.1 × 10-3 S cm-1 in the out-of-plane direction, indicating their potential in a wide range of solid electrolyte membranes.

4.
Phys Chem Chem Phys ; 23(42): 24233-24238, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34668901

RESUMO

The interlayer spaces in two dimensional (2D) layered materials such as graphene, metal oxides and metal chalcogenides can be used in a number of roles that include the trapping of gases, for ion transfer and for water purification applications. In such spaces, "inner" pressure occurs on guest species enclosed between the layers and its variation can, in principal, be used for precisely controlling particular guest properties. In this study, a mixture of two 2D materials including graphene oxide (GO) and nickel hydroxide (Ni(OH)2), was employed to yield an anisotropic GO-Ni(OH)2 hybrid 2D sheet. The inner pressure associated with this material was able to be tuned by reduction of the GO (to yield rGO) and this in turn was shown to affect the magnetic behaviour of Ni(OH)2. The ferromagnetic transition temperature (Tc) for Ni(OH)2 decreases as the interlayer distance became shorter, which is opposite to the behaviour observed for the application of hydrostatic pressure to the hybrid sheet. The uniaxial pressure affecting the interlayer of the 2D material, and generated by the reduction of GO to rGO, has the potential to not only influence the behaviour of a range of magnetic materials, but also individual properties of other types of functional materials.

5.
ACS Appl Nano Mater ; 4(11): 11881-11887, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-37556290

RESUMO

The rapid transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-driven infection signifies an ultimate challenge to global health, and the development of effective strategies for preventing and/or mitigating its effects are of the utmost importance. In the current study, an in-depth investigation for the understanding of the SARS-CoV-2 inactivation route using graphene oxide (GO) is presented. We focus on the antiviral effect of GO nanosheets on three SARS-CoV-2 strains: Wuhan, B.1.1.7 (U.K. variant), and P.1 (Brazilian variant). Plaque assay and real-time reverse transcription-polymerase chain reaction (RT-PCR) showed that 50 and 98% of the virus in a supernatant could be cleared following incubation with GO (100 µg/mL) for 1 and 60 min, respectively. Transmission electron microscopy (TEM) analysis and protein (spike (S) and nucleocapsid (N) proteins) decomposition evaluation confirm a two-step virus inactivation mechanism that includes (i) adsorption of the positively charged spike of SARS-CoV-2 on the negatively charged GO surface and (ii) neutralization/inactivation of the SARS-CoV-2 on the surface of GO through decomposition of the viral protein. As the interaction of S protein with human angiotensin-converting enzyme 2 (ACE2) is required for SARS-CoV-2 to enter into human cells, the damage to the S protein using GO makes it a potential candidate for use in contributing to the inhibition of the worldwide spread of SARS-CoV-2. Specifically, our findings provide the potential for the construction of an effective anti-SARS-CoV-2 face mask using a GO nanosheet, which could contribute greatly to preventing the spread of the virus. In addition, as the effect of surface contamination can be severe in the spreading of SARS-CoV-2, the development of efficient anti-SARS-CoV-2 protective surfaces/coatings based on GO nanosheets could play a significant role in controlling the spread of the virus through the utilization of GO-based nonwoven cloths, filters, and so on.

6.
RSC Adv ; 12(1): 406-412, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35424526

RESUMO

The key challenges for converting chitin to 5-hydroxymethylfurfural (5-HMF) include the low 5-HMF yield. Moreover, the disadvantages of traditional acid-base catalysts including complex post-treatment processes, the production of by-products, and severe equipment corrosion also largely limit the large-scale conversion of chitin to 5-HMF. In this view, herein we have demonstrated a microwave aided efficient and green conversion of chitin to 5-HMF while using polyoxometalate (POM) as a catalyst and DMSO/water as solvent. Chitin treated with H2SO4 followed by ball-milling (chitin-H2SO4-BM) was selected as the starting compound for the conversion process. Four different POMs including H3[PW12O40], H3[PMo12O40], H4[SiW12O40] and H4[SiMo12O40] were used as catalysts. Various reaction parameters including reaction temperature, amount of catalyst, mass ratios of water/DMSO and reaction time have been investigated to optimize the 5-HMF conversion. The H4[SiW12O40] catalyst exhibited the highest catalytic performance with 23.1% HMF yield at optimum operating conditions which is the highest among the literature for converting chitin to 5-HMF. Significantly, the disadvantages of the state of the art conversion routes described earlier can be overcome using POM-based catalysts, which makes the process more attractive to meet the ever-increasing energy demands, in addition to helping consume crustacean waste.

7.
ACS Omega ; 3(2): 2074-2083, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458516

RESUMO

High dielectric constants (εr) were observed in two-dimensional composites obtained from stacking of reduced graphene oxide (RGO) with Ca2Nb3O10 and with TiO2 nanosheets. The relative dielectric permittivity values of the composites were found to be higher than 105, an amazingly high value compared to that of similar GO composites and other common dielectric materials. As a consequence, we considered application of the hybrids as super dielectric materials in high capacitance supercapacitors. The route to high capacitance involves the variation of oxygen vacancies within the surface and in the closest bulk interior of the hybrids. The effective charges generated throughout the metal oxide and carbon-oxygen polar bonding systems within the graphene skeleton appear to highly influence dielectric polarization. Moreover, the replenishment of oxygen vacancies at the RGO and metal oxide interface also contributes to polarizability.

8.
Glob Chall ; 1(6): 1700054, 2017 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31565285

RESUMO

Graphene oxide (GO) shows high proton conductivity (≈10-4 Scm-1), excellent mechanical stability, and electrical insulation property, which makes it an ideal candidate for use as a proton conducting solid state electrolyte. The prospects of using GO as single phase solid electrolyte in an all solid battery is presented herein. A battery with the cell configuration: Zn + ZnSO4•7H2O + graphite (anode) || GO (electrolyte) || MnO2 + graphite (cathode) is fabricated. Cyclic voltammetry confirms its rechargeable nature. The respective discharge capacity and power density of the cell are 360 µAh and 19.5 mW kg-1 at a constant current drain of 3 µA under the experimental conditions employed. GO based proton conductors are cleaner and cheaper than other solid electrolytes. The current study strongly suggests that GO can be used as a practical and beneficial component in solid state battery applications with low energy feedback.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...