Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14090, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640847

RESUMO

Olfactory dysfunction associated with coronavirus 2 (SARS-CoV-2) infection is in most cases transient, recovering spontaneously within a few days. However, in some patients it persists for a long time, affects their everyday life and endangers their health. Hence, we focused on patients with persistent loss of smell. The aim of this study was to evaluate olfactory dysfunction using a standardized test. Due to the pandemic, olfactory testing was performed online. Smell tests (Odorized Markers Test, OMT) were sent home to the patients. Together with the smell self-testing, participants reported and assessed several parameters (age, sex, subjective assessment of smell and taste, nasal patency, etc.) in an online questionnaire. Based on the questionnaire outcomes, the results were sent to the patients along with a list of participating otolaryngologists who provided them with professional care. From March to June 2021, 1025 patients requested smell testing, of these, 824 met the inclusion criteria of this study. The duration of the olfactory dysfunction at the time of testing ranged from 1 month to 1 year. Using the OMT, impaired smell ability-anosmia or hyposmia-was confirmed in 82.6% of participants. A total of 17.4% of participants were determined to be normosmic however, more than 50% of them complained of parosmia and/or phantosmia. Our study demonstrates the relevance of psychophysical smell testing and its suitability for remote use during the pandemic. This study also revealed several correlations between prolonged olfactory dysfunction and the monitored parameters.


Assuntos
COVID-19 , Transtornos do Olfato , Humanos , Olfato , COVID-19/complicações , SARS-CoV-2 , Transtornos do Olfato/diagnóstico , Transtornos do Olfato/etiologia , Anosmia/etiologia
2.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628378

RESUMO

Obesity is one of the biggest and most costly health challenges the modern world encounters. Substantial evidence suggests that the risk of metabolic syndrome or obesity formation may be affected at a very early stage of development, in particular through fetal and/or neonatal overfeeding. Outcomes from epidemiological studies indicate that maternal nutrition during pregnancy and lactation has a profound impact on adult neurogenesis in the offspring. In the present study, an intergenerational dietary model employing overfeeding of experimental mice during prenatal and early postnatal development was applied to acquire mice with various body conditions. We investigated the impact of the maternal high-energy diet during pregnancy and lactation on adult neurogenesis in the olfactory neurogenic region involving the subventricular zone (SVZ) and the rostral migratory stream (RMS) and some behavioral tasks including memory, anxiety and nociception. Our findings show that a maternal high-energy diet administered during pregnancy and lactation modifies proliferation and differentiation, and induced degeneration of cells in the SVZ/RMS of offspring, but only in mice where extreme phenotype, such as significant overweight/adiposity or obesity is manifested. Thereafter, a maternal high-energy diet enhances anxiety-related behavior in offspring regardless of its body condition and impairs learning and memory in offspring with an extreme phenotype.


Assuntos
Filhos Adultos , Lactação , Animais , Dieta/efeitos adversos , Feminino , Humanos , Camundongos , Neurogênese , Obesidade/metabolismo , Fenótipo , Gravidez
3.
Histol Histopathol ; 36(6): 685-696, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33779980

RESUMO

An ever-increasing use of wireless devices over the last decades has forced scientists to clarify their impact on living systems. Since prenatal development is highly sensitive to numerous noxious agents, including radiation, we focused on the assessment of potential adverse effects of microwave radiation (MR) on testicular development. Pregnant Wistar albino rats (3 months old, weighing 282±8 g) were exposed to pulsed MR at a frequency of 2.45 GHz, mean power density of 2.8 mW/cm², and a specific absorption rate of 1.82 W/kg for 2 hours/day throughout pregnancy. Male offspring were no longer exposed to MR following birth. Samples of biological material were collected after reaching adulthood (75 days). In utero MR exposure caused degenerative changes in the testicular parenchyma of adult rats. The shape of the seminiferous tubules was irregular, germ cells were degenerated and often desquamated. The diameters of the seminiferous tubules and the height of the germinal epithelium were significantly decreased (both at ∗∗p<0.01), while the interstitial space was significantly increased (∗∗p<0.01) when compared to the controls. In the group of rats prenatally exposed to MR, the somatic and germ cells were rich in vacuoles and their organelles were often altered. Necrotizing cells were more frequent and empty spaces between Sertoli cells and germ cells were observed. The Leydig cells contained more lipid droplets. An increased Fluoro Jade - C and superoxide dismutase 2 positivity was detected in the rats exposed to MR. Our results confirmed adverse effects of MR on testicular development.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Testículo/efeitos da radiação , Animais , Feminino , Células Intersticiais do Testículo/patologia , Masculino , Ratos , Ratos Wistar , Túbulos Seminíferos/efeitos da radiação , Células de Sertoli/patologia , Testículo/embriologia , Testículo/patologia
4.
Stress ; 23(6): 678-687, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33375878

RESUMO

The main and accessory olfactory bulbs (MOB and AOB) are unique in that they produce new neurons throughout adulthood. Despite the recent knowledge about the involvement of postnatally generated cells in several aspects of olfaction, the functional role of these neurons is still not sufficiently understood. The function of newly generated olfactory bulb neurons is primarily investigated in relation to activities related to smell. Stress-induced activation of new olfactory neurons has not yet been studied. Thus, our work was aimed to investigate whether a stressful event, such as maternal separation (MS) can induce Fos expression in postnatally-born neurons in the MOB and AOB. Rat pups were exposed to single maternal separation (SMS) for 2 h at the postnatal days: P7, P14, and P21. Quantification of immunohistochemically labeled Fos + cells revealed that exposure to SMS in different age stages during the first postnatal month stimulates activity in cells of individual MOB/AOB layers in an age-dependent manner. In order to find out whether newly generated cells in the MOB/AOB could express Fos protein as a response to SMS, newborn rats were administrated with the marker of proliferation, bromodeoxyuridine (BrdU) at P0, and three weeks later (at P21) colocalization of Fos and BrdU in the neurons of the MOB and AOB was assessed. Quantitative analysis of BrdU/Fos double-labeled cells showed that Fos is expressed only in a small number of postnatally generated cells within the MOB/AOB. Our results indicate that postnatally generated MOB/AOB neurons are less sensitive to stress caused by MS than preexisting ones. LAY SUMMARY Our results showed that single maternal separation (SMS) is a stressful event that in age-dependent manner stimulates cellular activity in the main and accessory olfactory bulb (AOB) - the structures dedicated to odor information processing. The low level of Fos expression in newborn neurons of the main and accessory bulb indicates that postnatally generated cells are less sensitive to neonatal stress than preexisting neurons.


Assuntos
Privação Materna , Bulbo Olfatório , Animais , Neurônios , Ratos , Olfato , Estresse Psicológico
5.
Histol Histopathol ; 34(4): 391-403, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30259955

RESUMO

BACKGROUND: Nowadays, mobile devices that emit non-ionizing electromagnetic radiation (EMR) are predominantly used by juveniles and pubescents. The aim of the present study was to evaluate the effect of whole body pulsed EMR on the juvenile Wistar albino rat testis at a frequency of 2.45 GHz and mean power density of 2.8 mW/cm². METHODS: The investigated animals (n=24) were divided into two control and two EMR groups (5 and 6 week old rats; 6 rats per group). Both EMR groups were irradiated continually for 3 weeks (2h/day) from postnatal days 14 and 21, respectively. RESULTS: EMR caused an irregular shape of seminiferous tubules with desquamated immature germ cells in the lumen, a large number of empty spaces along the seminiferous epithelium and dilated and congested blood vessels in the interstitial tissue of the testis. The cytoplasm of Sertoli cells showed strong vacuolization and damaged organelles, with the cytoplasm full of different heterophagic and lipid vacuoles or the cytoplasm of spermatocytes with swollen mitochondria in both irradiated groups. A significant increase in the total tubular area of seminiferous tubules was observed in both EMR groups compared with controls (P<0.001). A significant increase in the TUNEL-positive apoptotic nuclei (P<0.01) was accompanied by a significant rise in both Cu-Zn-SOD (P<0.01) and Mn-SOD (P<0.001) positive cells in the 6 week old experimental rats compared to control animals. CONCLUSION: Our results confirmed a harmful effect of non-ionizing radiation on the structure and ultrastructure of the juvenile rat testis.


Assuntos
Radiação Eletromagnética , Radiação não Ionizante/efeitos adversos , Testículo/efeitos da radiação , Envelhecimento , Animais , Masculino , Ratos , Ratos Wistar
6.
Brain Res ; 1698: 121-129, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092230

RESUMO

In adult rodents, neuroblasts originating from the subventricular zone migrate tangentially through the rostral migratory stream (RMS) toward the olfactory bulb where they differentiate into interneurons. Neuroblasts in the RMS migrate in chains for a long distance along specifically arranged blood vessels which promote their migration. Although blood vessels in the neurogenic region of the forebrain are present early in development, their rearrangement into this specific pattern takes place during the first postnatal weeks. Here we examined the relevance of this rearrangement to the migration-guiding "scaffold" for the neurogenic processes in the RMS such as cell migration and proliferation. To disturb the reorganization of blood vessels, endostatin - an inhibitor of angiogenesis, was administered systemically to rat pups during the first postnatal week. Ten days or three months later, the arrangement of blood vessels, migration and proliferation of cells in the RMS were assessed. As we expected, the inhibition of angiogenesis disrupted rearrangement of blood vessels in the RMS. The rearrangement's failure resulted in a strong disruption of the mode and direction of neuroblast migration. Chain migration failed and neuroblasts migrated out of the RMS. The inhibition caused a slight increase in the number of proliferating cells in the RMS. The consequences were more obvious ten days after the inhibition of angiogenesis, although they persisted partly into adulthood. Altogether, here we show that the process of rearrangement of blood vessels in the RMS during the early postal period is crucial to ensure the regular course of postnatal neurogenesis.


Assuntos
Endostatinas/metabolismo , Neovascularização Fisiológica/fisiologia , Neurogênese/fisiologia , Inibidores da Angiogênese/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Animais Recém-Nascidos/fisiologia , Astrócitos/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Endostatinas/farmacologia , Feminino , Interneurônios/fisiologia , Ventrículos Laterais/fisiologia , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Bulbo Olfatório/fisiologia , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/fisiologia , Ratos , Ratos Wistar
7.
Gen Physiol Biophys ; 37(3): 275-283, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29938674

RESUMO

Accumulating evidence confirms that the exposure of neonatal rats to maternal separation can significantly alter individual processes of postnatal neurogenesis in the olfactory neurogenic region - the subventricular zone (SVZ) and the rostral migratory stream (RMS). To establish the stressful influence of MS on postnatal neurogenesis we have investigated whether altered olfactory environment caused by short-term MS induces expression of Fos protein in the SVZ/RMS and in the olfactory cortical area - anterior olfactory nucleus (AON) of neonatal rats. Pups were separated from mothers for 2 hours at the postnatal days 7, 14 and 21. Immunohistochemically labeled Fos protein was assessed. Our results revealed that single exposure to MS is a stressful event that selectively and in age-dependent manner stimulates cellular activity in the SVZ and AON. A few Fos+ cells were found in the SVZ of P21 control animals and MS significantly increased their number. This suggests that some SVZ cells are included in the circuitry, which is activated by MS and that these cells have complete equipment for the Fos signal transduction. MS significantly increased the number of Fos+ cells in the AON in all age stages examined suggesting that its effect is mediated by olfaction.


Assuntos
Regulação da Expressão Gênica , Ventrículos Laterais/metabolismo , Privação Materna , Neurogênese , Córtex Olfatório/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Ventrículos Laterais/citologia , Córtex Olfatório/citologia , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...