Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14682, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918559

RESUMO

Evaluating physical properties and mechanical parameters of rock slopes and their spatial variability is challenging, particularly at locations inaccessible for fieldwork. This obstacle can be bypassed by acquiring spatially-distributed field data indirectly. InfraRed Thermography (IRT) has emerged as a promising technology to statistically infer rock properties and inform slope stability models. Here, we explore the use of Cooling Rate Indices (CRIs) to quantify the thermal response of a granodiorite rock wall within the recently established Pozáry Test Site in Czechia. We observe distinct cooling patterns across different segments of the wall, compatible with the different degrees of weathering evaluated in the laboratory and suggested by IRT observations of cored samples. Our findings support previous examinations of the efficacy of this method and unveil correlations between cooling phases in the field and in the laboratory. We discuss the scale-dependency of the Informative Time Window (ITW) of the CRIs, noting that it may serve as a reference for conducting systematic IRT field surveys. We contend that our approach not only represents a viable and scientifically robust strategy for characterising rock slopes but also holds the potential for identifying unstable areas.

2.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36850839

RESUMO

The evaluation of strain in rock masses is crucial information for slope stability studies. For this purpose, a monitoring system for analyzing surface strain using resistivity strain gauges has been tested. Strain is a function of stress, and it is known that stress affects the mechanical properties of geomaterials and can lead to the destabilization of rock slopes. However, stress is difficult to measure in situ. In industrial practice, resistivity strain gauges are used for strain measurement, allowing even small strain changes to be recorded. This setting of dataloggers is usually expensive and there is no accounting for the influence of exogenous factors. Here, the aim of applying resistivity strain gauges in different configurations to measure surface strain in natural conditions, and to determine how the results are affected by factors such as temperature and incoming solar radiation, has been pursued. Subsequently, these factors were mathematically estimated, and a data processing system was created to process the results of each configuration. Finally, the new strategy was evaluated to measure in situ strain by estimating the effect of temperature. The approach highlighted high theoretical accuracy, hence the ability to detect strain variations in field conditions. Therefore, by adjusting for the influence of temperature, it is potentially possible to measure the deformation trend more accurately, while maintaining a lower cost for the sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...