Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22279759

RESUMO

BackgroundMost studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. MethodsPlasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FindingsStrong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months. Nasal and plasma anti-S IgG remained elevated for at least 12 months with high plasma neutralising titres against all variants. Of 180 with complete data, 160 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal. Samples 12 months after admission showed no association between nasal IgA and plasma IgG responses, indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. InterpretationThe decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. Research in contextO_ST_ABSEvidence before the studyC_ST_ABSWhile systemic immunity to SARS-CoV-2 is important in preventing severe disease, mucosal immunity prevents viral replication at the point of entry and reduces onward transmission. We searched PubMed with search terms "mucosal", "nasal", "antibody", "IgA", "COVID-19", "SARS-CoV-2", "convalescent" and "vaccination" for studies published in English before 20th July 2022, identifying three previous studies examining the durability of nasal responses that generally show nasal antibody to persist for 3 to 9 months. However, these studies were small or included individuals with mild COVID-19. One study of 107 care-home residents demonstrated increased salivary IgG (but not IgA) after two doses of mRNA vaccine, and another examined nasal antibody responses after infection and subsequent vaccination in 20 cases, demonstrating rises in both nasal IgA and IgG 7 to 10 days after vaccination. Added value of this studyStudying 446 people hospitalised for COVID-19, we show durable nasal and plasma IgG responses to ancestral (B.1 lineage) SARS-CoV-2, Delta and Omicron (BA.1) variants up to 12 months after infection. Nasal antibody induced by infection with pre-Omicron variants, bind Omicron virus in vitro better than plasma antibody. Although nasal and plasma IgG responses were enhanced by vaccination, Omicron binding responses did not reach levels equivalent to responses for ancestral SARS-CoV-2. Using paired plasma and nasal samples collected approximately 12 months after infection, we show that nasal IgA declines and shows a minimal response to vaccination whilst plasma antibody responses to S antigen are well maintained and boosted by vaccination. Implications of all the available evidenceAfter COVID-19 and subsequent vaccination, Omicron binding plasma and nasal antibody responses are only moderately enhanced, supporting the need for booster vaccinations to maintain immunity against SARS-CoV-2 variants. Notably, there is distinct compartmentalisation between nasal IgA and plasma IgA and IgG responses after vaccination. These findings highlight the need for vaccines that induce robust and durable mucosal immunity.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270391

RESUMO

ObjectivesTo describe physical behaviours following hospital admission for COVID-19 including associations with acute illness severity and ongoing symptoms. Methods1077 patients with COVID-19 discharged from hospital between March and November 2020 were recruited. Using a 14-day wear protocol, wrist-worn accelerometers were sent to participants after a five-month follow-up assessment. Acute illness severity was assessed by the WHO clinical progression scale, and the severity of ongoing symptoms was assessed using four previously reported data-driven clinical recovery clusters. Two existing control populations of office workers and type 2 diabetes were comparators. ResultsValid accelerometer data from 253 women and 462 men were included. Women engaged in a mean{+/-}SD of 14.9{+/-}14.7 minutes/day of moderate-to-vigorous physical activity (MVPA), with 725.6{+/-}104.9 minutes/day spent inactive and 7.22{+/-}1.08 hours/day asleep. The values for men were 21.0{+/-}22.3 and 755.5{+/-}102.8 minutes/day and 6.94{+/-}1.14 hours/day, respectively. Over 60% of women and men did not have any days containing a 30-minute bout of MVPA. Variability in sleep timing was approximately 2 hours in men and women. More severe acute illness was associated with lower total activity and MVPA in recovery. The very severe recovery cluster was associated with fewer days/week containing continuous bouts of MVPA, longer sleep duration, and higher variability in sleep timing. Patients post-hospitalisation with COVID-19 had lower levels of physical activity, greater sleep variability, and lower sleep efficiency than a similarly aged cohort of office workers or those with type 2 diabetes. ConclusionsPhysical activity and regulating sleep patterns are potential treatable traits for COVID-19 recovery programmes.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260940

RESUMO

BackgroundThe longitudinal trajectories of cardiopulmonary abnormalities and symptoms following infection with coronavirus disease (COVID-19) are unclear. We sought to describe their natural history in previously hospitalised patients, compare this with controls, and assess the relationship between symptoms and cardiopulmonary impairment at 6 months post-COVID-19. MethodsFifty-eight patients and thirty matched controls underwent symptom-questionnaires, cardiac and lung magnetic resonance imaging (CMR), cardiopulmonary exercise test (CPET), and spirometry at 3 months following COVID-19. Of them, forty-six patients returned for follow-up assessments at 6 months. FindingsAt 2-3 months, 83% of patients had at least one cardiopulmonary symptom versus 33% of controls. Patients and controls had comparable biventricular volumes and function. Native cardiac T1 (marker of inflammation) and late gadolinium enhancement (LGE, marker of focal fibrosis) were increased in patients. Sixty percent of patients had lung parenchymal abnormalities on CMR and 55% had reduced peak oxygen consumption (pVO2) on CPET. By 6 months, 53% of patients remained symptomatic. On CMR, indexed right ventricular (RV) end-diastolic volume (-4{middle dot}3 mls/m2, P=0{middle dot}005) decreased and RV ejection fraction (+3{middle dot}2%, P=0{middle dot}0003) increased. Native T1 and LGE improved and was comparable to controls. Lung parenchymal abnormalities and peak VO2, although better, were abnormal in patients versus controls. 31% had reduced pVO2 secondary to fatigue and submaximal tests. Cardiopulmonary symptoms in patients did not associate with CMR, lung function, or CPET measures. InterpretationIn patients, cardiopulmonary abnormalities improve over time, though some measures remain abnormal relative to controls. Persistent symptoms at 6 months post-COVID-19 did not associate with objective measures of cardiopulmonary health. FundingNIHR Oxford and Oxford Health BRC, Oxford BHF CRE, UKRI and Wellcome Trust.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...