Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 19(6)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36347038

RESUMO

Objective. Cortical activity can be recorded using a variety of tools, ranging in scale from the single neuron (microscopic) to the whole brain (macroscopic). There is usually a trade-off between scale and resolution; optical imaging techniques, with their high spatio-temporal resolution and wide field of view, are best suited to study brain activity at the mesoscale. Optical imaging of cortical areas is however in practice limited by the curvature of the brain, which causes the image quality to deteriorate significantly away from the center of the image.Approach. To address this issue and harness the full potential of optical cortical imaging techniques, we developed a new wide-field optical imaging system adapted to the macaque brain. Our system is composed of a curved detector, an aspherical lens and a ring composed of light emitting diodes providing uniform illumination at wavelengths relevant for the different optical imaging methods, including intrinsic and fluorescence imaging.Main results. The system was characterized and compared with the standard macroscope used for cortical imaging, and a three-fold increase of the area in focus was measured as well as a four-fold increase in the evenness of the optical qualityin vivo.Significance. This new instrument, which is to the best of our knowledge the first use of a curved detector for cortical imaging, should facilitate the observation of wide mesoscale phenomena such as dynamic propagating waves within and between cortical maps, which are otherwise difficult to observe due to technical limitations of the currently available recording tools.


Assuntos
Macaca , Córtex Visual , Animais , Córtex Visual/fisiologia , Imagem Óptica/métodos , Encéfalo/fisiologia , Neurônios/fisiologia
2.
Nature ; 583(7817): 529-532, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699398

RESUMO

Tunnelling is one of the most characteristic phenomena of quantum physics, underlying processes such as photosynthesis and nuclear fusion, as well as devices ranging from superconducting quantum interference device (SQUID) magnetometers to superconducting qubits for quantum computers. The question of how long a particle takes to tunnel through a barrier, however, has remained contentious since the first attempts to calculate it1. It is now well understood that the group delay2-the arrival time of the peak of the transmitted wavepacket at the far side of the barrier-can be smaller than the barrier thickness divided by the speed of light, without violating causality. This has been confirmed by many experiments3-6, and a recent work even claims that tunnelling may take no time at all7. There have also been efforts to identify a different timescale that would better describe how long a given particle spends in the barrier region8-10. Here we directly measure such a time by studying Bose-condensed 87Rb atoms tunnelling through a 1.3-micrometre-thick optical barrier. By localizing a pseudo-magnetic field inside the barrier, we use the spin precession of the atoms as a clock to measure the time that they require to cross the classically forbidden region. We study the dependence of the traversal time on the incident energy, finding a value of 0.61(7) milliseconds at the lowest energy for which tunnelling is observable. This experiment lays the groundwork for addressing fundamental questions about history in quantum mechanics: for instance, what we can learn about where a particle was at earlier times by observing where it is now11-13.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...