Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 600(14): 3265-3285, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35575293

RESUMO

Skeletal muscle haemodynamics and circulating adenosine triphosphate (ATP) responses during hypoxia and exercise are blunted in older (OA) vs. young (YA) adults, which may be associated with impaired red blood cell (RBC) ATP release. Rho-kinase inhibition improves deoxygenation-induced ATP release from OA isolated RBCs. We tested the hypothesis that Rho-kinase inhibition (via fasudil) in vivo would improve local haemodynamic and ATP responses during hypoxia and exercise in OA. Healthy YA (25 ± 3 years; n = 12) and OA (65 ± 5 years; n = 13) participated in a randomized, double-blind, placebo-controlled, crossover study on two days (≥5 days between visits). A forearm deep venous catheter was used to administer saline/fasudil and sample venous plasma ATP ([ATP]V ). Forearm vascular conductance (FVC) and [ATP]V were measured at rest, during isocapnic hypoxia (80% SpO2${S_{{\rm{p}}{{\rm{O}}_{\rm{2}}}}}$ ), and during graded rhythmic handgrip exercise that was similar between groups (5, 15 and 25% maximum voluntary contraction (MVC)). Isolated RBC ATP release was measured during normoxia/hypoxia. With saline, ΔFVC was lower (P < 0.05) in OA vs. YA during hypoxia (∼60%) and during 15 and 25% MVC (∼25-30%), and these impairments were abolished with fasudil. Similarly, [ATP]V and ATP effluent responses from normoxia to hypoxia and rest to 25% MVC were lower in OA vs. YA and improved with fasudil (P < 0.05). Isolated RBC ATP release during hypoxia was impaired in OA vs. YA (∼75%; P < 0.05), which tended to improve with fasudil in OA (P = 0.082). These data suggest Rho-kinase inhibition improves haemodynamic responses to hypoxia and moderate intensity exercise in OA, which may be due in part to improved circulating ATP. KEY POINTS: Skeletal muscle blood flow responses to hypoxia and exercise are impaired with age. Blunted increases in circulating ATP, a vasodilator, in older adults may contribute to age-related impairments in haemodynamics. Red blood cells (RBCs) are a primary source of circulating ATP, and treating isolated RBCs with a Rho-kinase inhibitor improves age-related impairments in deoxygenation-induced RBC ATP release. In this study, treating healthy older adults systemically with the Rho-kinase inhibitor fasudil improved blood flow and circulating ATP responses during hypoxia and moderate intensity handgrip exercise compared to young adults, and also tended to improve isolated RBC ATP release. Improved blood flow regulation with fasudil was also associated with increased skeletal muscle oxygen delivery during hypoxia and exercise in older adults. This is the first study to demonstrate that Rho-kinase inhibition can significantly improve age-related impairments in haemodynamic and circulating ATP responses to physiological stimuli, which may have therapeutic implications.


Assuntos
Trifosfato de Adenosina , Força da Mão , Trifosfato de Adenosina/farmacologia , Adulto , Estudos Cross-Over , Antebraço/irrigação sanguínea , Força da Mão/fisiologia , Hemodinâmica , Humanos , Hipóxia , Músculo Esquelético/fisiologia , Fluxo Sanguíneo Regional , Adulto Jovem , Quinases Associadas a rho
2.
J Appl Physiol (1985) ; 131(2): 566-574, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166116

RESUMO

The vascular endothelium senses and integrates numerous inputs to regulate vascular tone. Recent evidence reveals complex signal processing within the endothelium, yet little is known about how endothelium-dependent stimuli interact to regulate blood flow. We tested the hypothesis that combined stimulation of the endothelium with adenosine triphosphate (ATP) and acetylcholine (ACh) elicits greater vasodilation and attenuates α1-adrenergic vasoconstriction compared with combination of ATP or ACh with the endothelium-independent dilator sodium nitroprusside (SNP). We assessed forearm vascular conductance (FVC) in young adults (6 women, 7 men) during local intra-arterial infusion of ATP, ACh, or SNP alone and in the following combinations: ATP + ACh, SNP + ACh, and ATP + SNP, wherein the second dilator was coinfused after attaining steady state with the first dilator. By design, each dilator evoked a similar response when infused separately (ΔFVC, ATP: 48 ± 4; ACh: 57 ± 6; SNP: 53 ± 6 mL·min-1·100 mmHg-1; P ≥ 0.62). Combined infusion of the endothelium-dependent dilators evoked greater vasodilation than combination of either dilator with SNP (ΔFVC from first dilator, ATP + ACh: 45 ± 9 vs. SNP + ACh: 18 ± 7 and ATP + SNP: 26 ± 4 mL·min-1·100 mmHg-1, P < 0.05). Phenylephrine was subsequently infused to evaluate α1-adrenergic vasoconstriction. Phenylephrine elicited less vasoconstriction during infusion of ATP or ACh versus SNP (ΔFVC, -25 ± 3 and -29 ± 4 vs. -48 ± 3%; P < 0.05). The vasoconstrictor response to phenylephrine was further diminished during combined infusion of ATP + ACh (-13 ± 3%; P < 0.05 vs. ATP or ACh alone) and was less than that observed when either dilator was combined with SNP (SNP + ACh: -26 ± 3%; ATP + SNP: -31 ± 4%; both P < 0.05 vs. ATP + ACh). We conclude that endothelium-dependent agonists interact to elicit vasodilation and limit α1-adrenergic vasoconstriction in humans.NEW & NOTEWORTHY The results of this study highlight the vascular endothelium as a critical site for integration of vasomotor signals in humans. To our knowledge, this is the first study to demonstrate that combined stimulation of the endothelium with ATP and ACh results in enhanced vasodilation compared with combination of either ATP or ACh with an endothelium-independent dilator. Furthermore, we show that ATP and ACh interact to modulate α1-adrenergic vasoconstriction in human skeletal muscle in vivo.


Assuntos
Acetilcolina , Vasoconstrição , Trifosfato de Adenosina , Adrenérgicos , Endotélio Vascular , Feminino , Antebraço , Humanos , Masculino , Nitroprussiato/farmacologia , Fluxo Sanguíneo Regional , Vasodilatação , Adulto Jovem
3.
J Physiol ; 598(13): 2621-2636, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32329892

RESUMO

KEY POINTS: During exercise, blood flow to working skeletal muscle increases in parallel with contractile activity such that oxygen delivery is sufficient to meet metabolic demand. K+ released from active skeletal muscle fibres could facilitate vasodilatation in proportion to the degree of muscle fibre recruitment. Once released, K+ stimulates inwardly rectifying K+ (KIR ) channels on the vasculature to elicit an increase in blood flow. In the present study, we demonstrate that KIR channels mediate the rapid vasodilatory response to an increase in exercise intensity. We also show that KIR channels augment vasodilatation during exercise which demands greater muscle fibre recruitment independent of the total amount of work performed. These results suggest that K+ plays a key role in coupling the magnitude of vasodilatation to the degree of contractile activity. Ultimately, the findings from this study help us understand the signalling mechanisms that regulate muscle blood flow in humans. ABSTRACT: Blood flow to active skeletal muscle is augmented with greater muscle fibre recruitment. We tested whether activation of inwardly rectifying potassium (KIR ) channels underlies vasodilatation with elevated muscle fibre recruitment when work rate is increased (Protocol 1) or held constant (Protocol 2). We assessed forearm vascular conductance (FVC) during rhythmic handgrip exercise under control conditions and during local inhibition of KIR channels (intra-arterial BaCl2 ). In Protocol 1, healthy volunteers performed mild handgrip exercise for 3 min, then transitioned to moderate intensity for 30 s. BaCl2 eliminated vasodilatation during the first contraction at the moderate workload (ΔFVC, BaCl2 : -1 ± 17 vs. control: 30 ± 28 ml min-1  100 mmHg-1 ; n = 9; P = 0.004) and attenuated the 30 s area under the curve by 56 ± 14% (n = 9; P < 0.0001). In Protocol 2, participants performed two exercise bouts in which muscle fibre recruitment was manipulated while total contractile work was held constant via reciprocal changes in contraction frequency: (1) low fibre recruitment, with contractions at 12.5% maximal voluntary contraction once every 4 s and (2) high fibre recruitment, with contractions at 25% maximal voluntary contraction once every 8 s. Under control conditions, steady-state FVC was augmented in high vs. low fibre recruitment (211 ± 90 vs. 166 ± 73 ml min-1 ⋅100 mmHg-1 ; n = 10; P = 0.0006), whereas BaCl2 abolished the difference between high and low fibre recruitment (134 ± 59 vs. 134 ± 63 ml min-1  100 mmHg-1 ; n = 10; P = 0.85). These findings demonstrate that KIR channel activation is a key mechanism linking local vasodilatation with muscle fibre recruitment during exercise.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Vasodilatação , Antebraço , Força da Mão , Humanos , Contração Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético , Fluxo Sanguíneo Regional
4.
J Physiol ; 597(17): 4503-4519, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31310005

RESUMO

KEY POINTS: Red blood cells (RBCs) release ATP in response to deoxygenation, which can increase blood flow to help match oxygen supply with tissue metabolic demand. This release of ATP is impaired in RBCs from older adults, but the underlying mechanisms are unknown. In this study, improving RBC deformability in older adults restored deoxygenation-induced ATP release, whereas decreasing RBC deformability in young adults reduced ATP release to the level of that of older adults. In contrast, treating RBCs with a phosphodiesterase 3 inhibitor did not affect ATP release in either age group, possibly due to intact intracellular signalling downstream of deoxygenation as indicated by preserved cAMP and ATP release responses to pharmacological Gi protein activation in RBCs from older adults. These findings are the first to demonstrate that the age-related decrease in RBC deformability is a primary mechanism of impaired deoxygenation-induced ATP release, which may have implications for treating impaired vascular control with advancing age. ABSTRACT: In response to haemoglobin deoxygenation, red blood cells (RBCs) release ATP, which binds to endothelial purinergic receptors and stimulates vasodilatation. This ATP release is impaired in RBCs from older vs. young adults, but the underlying mechanisms are unknown. Using isolated RBCs from young (24 ± 1 years) and older (65 ± 2 years) adults, we tested the hypothesis that age-related changes in RBC deformability (Study 1) and cAMP signalling (Study 2) contribute to the impairment. RBC ATP release during normoxia ( PO2 ∼112 mmHg) and hypoxia ( PO2 ∼20 mmHg) was quantified with the luciferin-luciferase technique following RBC incubation with Y-27632 (Rho-kinase inhibitor to increase deformability), diamide (cell-stiffening agent), cilostazol (phosphodiesterase 3 inhibitor), or vehicle control. The mean change in RBC ATP release from normoxia to hypoxia in control conditions was significantly impaired in older vs. young (∼50% vs. ∼120%; P < 0.05). RBC deformability was also lower in older vs. young as indicated by a higher RBC transit time (RCTT) measured by blood filtrometry (RCTT: 8.541 ± 0.050 vs. 8.234 ± 0.098 a.u., respectively; P < 0.05). Y-27632 improved RBC deformability (RCTT: 8.228 ± 0.083) and ATP release (111.7 ± 17.2%) in older and diamide decreased RBC deformability (RCTT: 8.955 ± 0.114) and ATP release (67.4 ± 11.8%) in young (P < 0.05), abolishing the age group differences (P > 0.05). Cilostazol did not change ATP release in either age group (P > 0.05), and RBC cAMP and ATP release to pharmacological Gi protein activation was similar in both groups (P > 0.05). We conclude that decreased RBC deformability is a primary contributor to age-related impairments in RBC ATP release, which may have implications for impaired vascular control with advancing age.


Assuntos
Trifosfato de Adenosina/metabolismo , Eritrócitos/metabolismo , Adulto , Idoso , Amidas/farmacologia , Eritrócitos/efeitos dos fármacos , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Piridinas/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
5.
J Physiol ; 596(15): 3371-3389, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29603743

RESUMO

KEY POINTS: Increasing blood flow (hyperaemia) to exercising muscle helps match oxygen delivery and metabolic demand. During exercise in hypoxia, there is a compensatory increase in muscle hyperaemia that maintains oxygen delivery and tissue oxygen consumption. Nitric oxide (NO) and prostaglandins (PGs) contribute to around half of the augmented hyperaemia during hypoxic exercise, although the contributors to the remaining response are unknown. In the present study, inhibiting NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels did not blunt augmented hyperaemia during hypoxic exercise beyond previous observations with NO/PG block alone. Furthermore, although inhibition of only Na+ /K+ -ATPase and KIR channels abolished hyperaemia during hypoxia at rest, it had no effect on augmented hyperaemia during hypoxic exercise. This is the first study in humans to demonstrate that Na+ /K+ -ATPase and KIR channel activation is required for augmented muscle hyperaemia during hypoxia at rest but not during hypoxic exercise, thus providing new insight into vascular control. ABSTRACT: Exercise hyperaemia in hypoxia is augmented relative to the same exercise intensity in normoxia. During moderate-intensity handgrip exercise, endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to ∼50% of the augmented forearm blood flow (FBF) response to hypoxic exercise (HypEx), although the mechanism(s) underlying the remaining response are unclear. We hypothesized that combined inhibition of NO, PGs, Na+ /K+ -ATPase and inwardly rectifying potassium (KIR ) channels would abolish the augmented hyperaemic response in HypEx. In healthy young adults, FBF responses were measured (Doppler ultrasound) and forearm vascular conductance was calculated during 5 min of rhythmic handgrip exercise at 20% maximum voluntary contraction under regional sympathoadrenal inhibition in normoxia and isocapnic HypEx (O2 saturation ∼80%). Compared to control, combined inhibition of NO, PGs, Na+ /K+ -ATPase and KIR channels (l-NMMA + ketorolac + ouabain + BaCl2; Protocol 1; n = 10) blunted the compensatory increase in FBF during HypEx by ∼50% (29 ± 6 mL min-1 vs. 62 ± 8 mL min-1 , respectively, P < 0.05). By contrast, ouabain + BaCl2 alone (Protocol 2; n = 10) did not affect this augmented hyperaemic response (50 ± 11 mL min-1 vs. 60 ± 13 mL min-1 , respectively, P > 0.05). However, the blocked condition in both protocols abolished the hyperaemic response to hypoxia at rest (P < 0.05). We conclude that activation of Na+ /K+ -ATPase and KIR channels is involved in the hyperaemic response to hypoxia at rest, although it does not contribute to the augmented exercise hyperaemia during hypoxia in humans.


Assuntos
Hiperemia/fisiopatologia , Hipóxia/fisiopatologia , Músculo Esquelético/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Adulto , Exercício Físico/fisiologia , Feminino , Humanos , Masculino , Canais de Potássio Corretores do Fluxo de Internalização/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Adulto Jovem
6.
Physiol Rep ; 6(2)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29380952

RESUMO

Dietary nitrate (NO3-) is converted to nitrite (NO2-) and can be further reduced to the vasodilator nitric oxide (NO) amid a low O2 environment. Accordingly, dietary NO3- increases hind limb blood flow in rats during treadmill exercise; however, the evidence of such an effect in humans is unclear. We tested the hypothesis that acute dietary NO3- (via beetroot [BR] juice) increases forearm blood flow (FBF) via local vasodilation during handgrip exercise in young adults (n = 11; 25 ± 2 years). FBF (Doppler ultrasound) and blood pressure (Finapres) were measured at rest and during graded handgrip exercise at 5%, 15%, and 25% maximal voluntary contraction (MVC) lasting 4 min each. At the highest workload (25% MVC), systemic hypoxia (80% SaO2 ) was induced and exercise continued for three additional minutes. Subjects ingested concentrated BR (12.6 mmol nitrate (n = 5) or 16.8 mmol nitrate (n = 6) and repeated the exercise bout either 2 (12.6 mmol) or 3 h (16.8 mmol) postconsumption. Compared to control, BR significantly increased FBF at 15% MVC (184 ± 15 vs. 164 ± 15 mL/min), 25% MVC (323 ± 27 vs. 286 ± 28 mL/min), and 25% + hypoxia (373 ± 39 vs. 343 ± 32 mL/min) and this was due to increases in vascular conductance (i.e., vasodilation). The effect of BR on hemodynamics was not different between the two doses of BR ingested. Forearm VO2 was also elevated during exercise at 15% and 25% MVC. We conclude that acute increases in circulating NO3- and NO2- via BR increases muscle blood flow during moderate- to high-intensity handgrip exercise via local vasodilation. These findings may have important implications for aging and diseased populations that demonstrate impaired muscle perfusion and exercise intolerance.


Assuntos
Beta vulgaris , Exercício Físico/fisiologia , Músculo Esquelético/irrigação sanguínea , Nitratos/administração & dosagem , Adulto , Suplementos Nutricionais , Feminino , Sucos de Frutas e Vegetais , Força da Mão , Hemodinâmica/fisiologia , Humanos , Masculino , Nitritos/sangue , Consumo de Oxigênio/fisiologia , Raízes de Plantas , Fluxo Sanguíneo Regional , Vasodilatação/fisiologia
8.
Clin J Am Soc Nephrol ; 10(7): 1227-34, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-25901092

RESUMO

BACKGROUND AND OBJECTIVES: Metabolomics is a relatively new field of "-omics" research, focusing on high-throughput identification of small molecular weight metabolites. Diet has both acute and chronic effects on metabolic profiles; however, alterations in response to dietary sodium restriction (DSR) are completely unknown. The goal of this study was to explore changes in urine metabolites in response to DSR, as well as their association with previously reported improvements in vascular function with DSR. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Using stored urine samples from a 10-week randomized placebo-controlled crossover study of DSR in 17 middle-aged/older adults (six men and 11 women; mean age 62±8 years) who had moderately elevated systolic BP (130-159 mmHg) and were otherwise healthy, a liquid chromatography/mass spectrometry-based analysis of 289 metabolites was performed. This study identified metabolites that were significantly altered between the typical (153±29 mmol/d) and low (70±29 mmol/d) sodium conditions, as well as their baseline (typical sodium) association with responsiveness to previously reported improvements in vascular endothelial function (brachial artery flow-mediated dilation) and large elastic artery stiffness (aortic pulse wave velocity). RESULTS: Of the 289 metabolites surveyed, 10 were significantly altered (nine were upregulated and one was downregulated) during the low sodium condition, and eight of these exceeded our prespecified clinically significant threshold of a >40% change. These metabolites were involved in biologic pathways broadly related to cardiovascular risk, nitric oxide production, oxidative stress, osmotic regulation, and metabolism. One metabolite, serine, was independently (positively) associated with previously reported improvements in the primary vascular outcome of brachial artery flow-mediated dilation. CONCLUSIONS: This proof-of-concept study provides the first evidence that DSR is a stimulus that induces significant changes in urinary metabolomic profiles. Moreover, serine was independently associated with corresponding changes in vascular endothelial function after DSR. Larger follow-up studies will be required to confirm and further elucidate the metabolic pathways that are altered in response to DSR.


Assuntos
Dieta Hipossódica , Hipertensão/dietoterapia , Hipertensão/urina , Metabolômica , Serina/urina , Idoso , Biomarcadores/urina , Pressão Sanguínea , Artéria Braquial/fisiopatologia , Colorado , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Masculino , Metabolômica/métodos , Pessoa de Meia-Idade , Análise de Onda de Pulso , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Fatores de Tempo , Resultado do Tratamento , Urinálise , Rigidez Vascular , Vasodilatação
9.
Clin J Am Soc Nephrol ; 8(11): 1952-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929930

RESUMO

BACKGROUND AND OBJECTIVES: Systolic BP and large elastic artery stiffness both increase with age and are reduced by dietary sodium restriction. Production of the natriuretic hormone marinobufagenin, an endogenous α1 Na+,K+-ATPase inhibitor, is increased in salt-sensitive hypertension and contributes to the rise in systolic BP during sodium loading. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: The hypothesis was that dietary sodium restriction performed in middle-aged/older adults (eight men and three women; 60 ± 2 years) with moderately elevated systolic BP (139 ± 2/83 ± 2 mmHg) would reduce urinary marinobufagenin excretion as well as systolic BP and aortic pulse-wave velocity (randomized, placebo-controlled, and crossover design). This study also explored the associations among marinobufagenin excretion with systolic BP and aortic pulse-wave velocity across conditions of 5 weeks of a low-sodium (77 ± 9 mmol/d) and 5 weeks of a normal-sodium (144 ± 7 mmol/d) diet. RESULTS: Urinary marinobufagenin excretion (weekly measurements; 25.4 ± 1.8 versus 30.7 ± 2.1 pmol/kg per day), systolic BP (127 ± 3 versus 138 ± 5 mmHg), and aortic pulse-wave velocity (700 ± 40 versus 843 ± 36 cm/s) were lower during the low- versus normal-sodium condition (all P<0.05). Across all weeks, marinobufagenin excretion was related with systolic BP (slope=0.61, P<0.001) and sodium excretion (slope=0.46, P<0.001). These associations persisted during the normal- but not the low-sodium condition (both P<0.005). Marinobufagenin excretion also was associated with aortic pulse-wave velocity (slope=0.70, P=0.02) and endothelial cell expression of NAD(P)H oxidase-p47phox (slope=0.64, P=0.006). CONCLUSIONS: These results show, for the first time in humans, that dietary sodium restriction reduces urinary marinobufagenin excretion and that urinary marinobufagenin excretion is positively associated with systolic BP, aortic stiffness (aortic pulse-wave velocity), and endothelial cell expression of the oxidant enzyme NAD(P)H oxidase. Importantly, marinobufagenin excretion is positively related to systolic BP over ranges of sodium intake typical of an American diet, extending previous observations in rodents and humans fed experimentally high-sodium diets.


Assuntos
Pressão Sanguínea , Bufanolídeos/urina , Dieta Hipossódica , Hipertensão/dietoterapia , Rigidez Vascular , Idoso , Biomarcadores/urina , Colorado , Estudos Cross-Over , Método Duplo-Cego , Células Endoteliais/enzimologia , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Hipertensão/urina , Masculino , Pessoa de Meia-Idade , NADPH Oxidases/metabolismo , Estresse Oxidativo , Análise de Onda de Pulso , Fatores de Tempo , Resultado do Tratamento
10.
J Am Coll Cardiol ; 61(3): 335-43, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23141486

RESUMO

OBJECTIVES: This study sought to determine the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP) (130-159 mm Hg) and the associated physiological mechanisms. BACKGROUND: Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. METHODS: Seventeen subjects (11 men and 6 women; mean age, 62 ± 7 years) completed a, randomized crossover study of 4 weeks of both low (DSR) and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH(4)) bioavailability, and oxidative stress-associated mechanisms were assessed following each condition. RESULTS: Urinary sodium excretion was reduced by ≈ 50% (to 70 ± 30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMD(BA)]) and resistance (forearm blood flow responses to acetylcholine [FBF(ACh)]) artery EDD were 68% and 42% (peak FBF(ACh)) higher following DSR (p < 0.005). Low sodium markedly enhanced NO-mediated EDD (greater ΔFBF(ACh) with endothelial NO synthase inhibition) without changing endothelial NO synthase expression/activation (Ser 1177 phosphorylation), restored BH(4) bioactivity (less ΔFMD(BA) with acute BH(4)), abolished tonic superoxide suppression of EDD (less ΔFMD(BA) and ΔFBF(ACh) with ascorbic acid infusion), and increased circulating superoxide dismutase activity (all p < 0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. CONCLUSIONS: DSR largely reversed both macro- and microvascular endothelial dysfunction by enhancing NO and BH(4) bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces "vascular protection" beyond that attributable to its BP-lowering effects.


Assuntos
Dieta Hipossódica , Endotélio Vascular/fisiopatologia , Hipertensão/dietoterapia , Sódio na Dieta/administração & dosagem , Idoso , Disponibilidade Biológica , Biopterinas/análogos & derivados , Biopterinas/farmacocinética , Pressão Sanguínea/fisiologia , Artéria Braquial/fisiologia , Estudos Cross-Over , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , Microcirculação/fisiologia , Pessoa de Meia-Idade , Estresse Oxidativo/fisiologia , Fluxo Sanguíneo Regional , Sódio na Dieta/urina , Resistência Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...