Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 9144-9154, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346142

RESUMO

We demonstrate direct-write patterning of single and multilayer MoS2 via a focused electron beam-induced etching (FEBIE) process mediated with the XeF2 precursor. MoS2 etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds. The results confirm that the electron beam-induced etching process is minimally invasive to the underlying material in comparison to ion beam techniques, which damage the subsurface material. Single-layer MoS2 field-effect transistors are fabricated, and device characteristics are compared for channels that are edited via the selected area etching process. The source-drain current at constant gate and source-drain voltage scale linearly with the edited channel width. Moreover, the mobility of the narrowest channel width decreases, suggesting that backscattered and secondary electrons collaterally affect the periphery of the removed area. Focused electron beam doses on single-layer transistors below the etching threshold were also explored as a means to modify/thin the channel layer. The FEBIE exposures showed demonstrative effects via the transistor transfer characteristics, photoluminescence spectroscopy, and Raman spectroscopy. While strategies to minimize backscattered and secondary electron interactions outside of the scanned regions require further investigation, here, we show that FEBIE is a viable approach for selective nanoscale editing of MoS2 devices.

2.
Sci Rep ; 13(1): 19096, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925566

RESUMO

Ferroelectric materials exhibiting switchable and spontaneous polarization have strong potential to be utilized in various novel electronic devices. Solid solutions of different perovskite structures induce the coexistence of various phases and enhance the physical functionalities around the phase coexistence region. The construction of phase diagrams is important as they describe the material properties, which are linked to the underpinning physics determining the system. Here we present the phase diagram of (K0.5Na0.5NbO3)-(Ba0.5Sr0.5TiO3) (KNN-BST) system as a function of composition and their associated physical properties. Lead-free (1 - x)KNN-xBST (0 ≤ x ≤ 0.3) solid solution ceramics were synthesized by conventional solid-state reaction technique. The X-ray diffraction and Raman spectroscopic studies indicate composition-dependent structural phase transitions from an orthorhombic phase for x = 0 to orthorhombic + tetragonal dual-phase (for 0.025 ≤ x ≤ 0.15), then a tetragonal + cubic dual-phase (x = 0.2) and finally a cubic single phase for x ≥ 0.25 at room temperature (RT). Among these, the orthorhombic + tetragonal dual-phase system shows an enhanced value of the dielectric constant at room temperature. The phase transition temperatures, orthorhombic to tetragonal (TO-T) and tetragonal to cubic (TC), decrease with the increase in BST concentrations. The ferroelectric studies show a decrease of both 2Pr and EC values with a rise in BST concentration and x = 0.025 showed a maximum piezoelectric coefficient.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839126

RESUMO

Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling.

4.
ACS Omega ; 8(3): 3148-3175, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36713724

RESUMO

3D nanoprinting, using focused electron beam-induced deposition, is prone to a common structural artifact arising from a temperature gradient that naturally evolves during deposition, extending from the electron beam impact region (BIR) to the substrate. Inelastic electron energy loss drives the Joule heating and surface temperature variations lead to precursor surface concentration variations due, in most part, to temperature-dependent precursor surface desorption. The result is unwanted curvature when prescribing linear segments in 3D objects, and thus, complex geometries contain distortions. Here, an electron dose compensation strategy is presented to offset deleterious heating effects; the Decelerating Beam Exposure Algorithm, or DBEA, which corrects for nanowire bending a priori, during computer-aided design, uses an analytical solution derived from information gleaned from 3D nanoprinting simulations. Electron dose modulation is an ideal solution for artifact correction because variations in electron dose have no influence on temperature. Thus, the generalized compensation strategy revealed here will help advance 3D nanoscale printing fidelity for focused electron beam-induced deposition.

5.
Sci Rep ; 12(1): 21427, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503913

RESUMO

High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.


Assuntos
Anti-Infecciosos , COVID-19 , Humanos , Ligas/farmacologia , Escherichia coli , SARS-CoV-2 , Anti-Infecciosos/farmacologia
6.
ACS Nano ; 16(9): 13900-13910, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35775975

RESUMO

PdSe2 has a layered structure with an unusual, puckered Cairo pentagonal tiling. Its atomic bond configuration features planar 4-fold-coordinated Pd atoms and intralayer Se-Se bonds that enable polymorphic phases with distinct electronic and quantum properties, especially when atomically thin. PdSe2 is conventionally orthorhombic, and direct synthesis of its metastable polymorphic phases is still a challenge. Here, we report an ambient-pressure chemical vapor deposition approach to synthesize metastable monoclinic PdSe2. Monoclinic PdSe2 is shown to be synthesized selectively under Se-deficient conditions that induce Se vacancies. These defects are shown by first-principles density functional theory calculations to reduce the free energy of the metastable monoclinic phase, thereby stabilizing it during synthesis. The structure and composition of the monoclinic PdSe2 crystals are identified and characterized by scanning transmission electron microscopy imaging, convergent beam electron diffraction, and electron energy loss spectroscopy. Polarized Raman spectroscopy of the monoclinic PdSe2 flakes reveals their strong in-plane optical anisotropy. Electrical transport measurements show that the monoclinic PdSe2 exhibits n-type charge carrier conduction with electron mobilities up to ∼298 cm2 V-1 s-1 and a strong in-plane electron mobility anisotropy of ∼1.9. The defect-mediated growth pathway identified in this work is promising for phase-selective direct synthesis of other 2D transition metal dichalcogenides.

7.
Nanomaterials (Basel) ; 12(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35564262

RESUMO

We synthesized a combinatorial library of CuxNi1−x alloy thin films via co-sputtering from Cu and Ni targets to catalyze graphene chemical vapor deposition. The alloy morphology, composition, and microstructure were characterized via scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), and X-ray diffraction (XRD), respectively. Subsequently, the CuxNi1−x alloy thin films were used to grow graphene in a CH4-Ar-H2 ambient at atmospheric pressure. The underlying rationale is to adjust the CuxNi1−x composition to control the graphene. Energy dispersive x-ray spectroscopy (EDS) analysis revealed that a continuous gradient of CuxNi1−x (25 at. % < x < 83 at.%) was initially achieved across the 100 mm diameter substrate (~0.9%/mm composition gradient). The XRD spectra confirmed a solid solution was realized and the face-centered cubic lattice parameter varied from ~3.52 to 3.58 A˙, consistent with the measured composition gradient, assuming Vegard's law. Optical microscopy and Raman analysis of the graphene layers suggest single layer growth occurs with x > 69 at.%, bilayer growth dominates from 48 at.% < x < 69 at.%, and multilayer (≥3) growth occurs for x < 48 at.%, where x is the Cu concentration. Finally, a large area of bi-layer graphene was grown via a CuxNi1−x catalyst with optimized catalyst composition and growth temperature.

8.
ACS Appl Mater Interfaces ; 14(13): 15047-15058, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35333040

RESUMO

The chemical composition and morphology of AuxCo1-x thin films and nanoparticles are controlled via a combination of cosputtering, pulsed laser-induced dewetting (PLiD), and annealing, leading to tunable magnetic and optical properties. Regardless of chemical composition, the as-deposited thin films and as-PLiD nanoparticles are found to possess a face-centered cubic (FCC) AuxCo1-x solid-solution crystal structure. Annealing results in large phase-separated grains of Au and Co in both the thin films and nanostructures for all chemical compositions. The magnetic and optical properties are characterized via vibrating sample magnetometry (VSM), ellipsometry, optical transmission spectroscopy, and electron energy loss spectroscopy (EELS). Despite the exceptionally high magnetic anisotropy inherent to Co, the presence of sufficient Au (72 atom %) in the AuxCo1-x solid solution results in superparamagnetic thin films. Among the as-PLiD nanoparticle samples, an increased Co composition leads to a departure from traditional ferromagnetism in favor of wasp-waisted hysteresis caused by magnetic vortices. Phase separation resulting from annealing leads to ferromagnetism for all compositions in both the thin films and nanoparticles. The optical properties of AuxCo1-x nanostructures are also largely influenced by the chemical morphology, where the AuxCo1-x intermixed solid solution has significantly damped plasmonic performance relative to pure Au and comparable to pure Co. Phase separation greatly enhances the quality factor, optical absorption, and electron energy loss spectroscopy (EELS) signatures. The enhancement of the localized surface plasmon resonances (LSPRs) scales with the reduction in Co composition, despite EELS evidence that excitation of the Co portions of a nanoparticle can provide a similar, and in some instances enhanced, LSPR resonance compared to Au. This behavior, however, is seemingly limited to the LSPR dipole mode, while higher-order modes are greatly damped by a Co aloof position. This observed magneto-plasmonic functionality and tunability could be applicable in biomedicine, namely, cancer therapeutics.

9.
Nanoscale ; 13(48): 20437-20450, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34859248

RESUMO

In the field of radiation damage of crystalline solids, new highly-concentrated alloys (HCAs) are now considered to be suitable candidate materials for next generation fission/fusion reactors due to recently recorded outstanding radiation tolerance. Despite the preliminarily reported extraordinary properties, the mechanisms of degradation, phase instabilities and decomposition of HCAs are still largely unexplored fields of research. Herein, we investigate the response of a nanocrystalline CoCrCuFeNi HCA to thermal annealing and heavy ion irradiation in the temperature range from 293 to 773 K with the objective to analyze the stability of the nanocrystalline HCA in extreme conditions. The results led to the identification of two regimes of response to irradiation: (i) in which the alloy was observed to be tolerant under extreme irradiation conditions and (ii) in which the alloy is subject to matrix phase instabilities. The formation of FeCo monodomain nanoparticles under these conditions is also reported and a differential phase contrast study in the analytical electron-microscope is carried out to qualitatively probe its magnetic properties.

10.
ACS Nano ; 15(5): 8976-8983, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33900723

RESUMO

The fabrication of patterned graphene electronics at high resolution is an important challenge for many applications in microelectronics. Here, we demonstrate the conversion of positive photoresist (PR), commonly employed in the commercial manufacture of consumer electronics, into laser-induced graphene (LIG). Sequential lasing converts the PR photopolymer first into amorphous carbon, then to photoresist-derived LIG (PR-LIG). The resulting material possesses good conductivity and is easily doped with metal or other additives for additional functionality. Furthermore, photolithographic exposure of PR prior to lasing enables the generation of PR-LIG patterns small enough to be invisible to the naked eye. By exploiting PR as a photopatternable LIG precursor, PR-LIG can be synthesized with a spatial resolution of ∼10 µm, up to 15 times smaller than conventional LIG patterning methods. The patterning of these small PR-LIG features could offer a powerful and broadly accessible strategy for the fabrication of microscale LIG-derived nanocomposites for on-chip devices.

11.
Opt Express ; 29(3): 4661-4671, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771037

RESUMO

We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image. The energy splitting of the magnetic mode and antibonding modes increases with the number of polygon edges (n). For the n=3-6 oligomers studied, optical simulations using normal incidence and s-polarized oblique incidence show the respective electric and magnetic modes' extinction efficiencies are maximized in the n=4 arrangement.

12.
Langmuir ; 37(8): 2575-2585, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33587633

RESUMO

We consider the coupled process of phase separation and dewetting of metal alloys of nanoscale thickness deposited on solid substrates. The experiments involve applying nanosecond laser pulses that melt the Ag40Ni60 alloy films in two setups: either on thin supporting membranes or on bulk substrates. These two setups allow for extracting both temporal and spatial scales on which the considered processes occur. The theoretical model involves a longwave version of the Cahn-Hilliard formulation used to describe spinodal decomposition, coupled with an asymptotically consistent longwave-based description of dewetting that occurs due to destabilizing interactions between the alloy and the substrate, modeled using the disjoining pressure approach. Careful modeling, combined with linear stability analysis and fully nonlinear simulations, leads to results consistent with the experiments. In particular, we find that the two instability mechanisms occur concurrently, with the phase separation occurring faster and on shorter temporal scales. The modeling results show a strong influence of the temperature dependence of relevant material properties, implying that such a dependence is crucial for the understanding of the experimental findings. The agreement between theory and experiment suggests the utility of the proposed theoretical approach in helping to develop further experiments directed toward formation of metallic alloy nanoparticles of desired properties.

13.
Nanomaterials (Basel) ; 10(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092147

RESUMO

Multiferroic (MF)-magnetoelectric (ME) composites, which integrate magnetic and ferroelectric materials, exhibit a higher operational temperature (above room temperature) and superior (several orders of magnitude) ME coupling when compared to single-phase multiferroic materials. Room temperature control and the switching of magnetic properties via an electric field and electrical properties by a magnetic field has motivated research towards the goal of realizing ultralow power and multifunctional nano (micro) electronic devices. Here, some of the leading applications for magnetoelectric composites are reviewed, and the mechanisms and nature of ME coupling in artificial composite systems are discussed. Ways to enhance the ME coupling and other physical properties are also demonstrated. Finally, emphasis is given to the important open questions and future directions in this field, where new breakthroughs could have a significant impact in transforming scientific discoveries to practical device applications, which can be well-controlled both magnetically and electrically.

14.
Adv Mater ; 32(39): e2002652, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32820560

RESUMO

A nanoscale hierarchical dual-phase structure is reported to form in a nanocrystalline NiFeCoCrCu high-entropy-alloy (HEA) film via ion irradiation. Under the extreme energy deposition and consequent thermal energy dissipation induced by energetic particles, a fundamentally new phenomenon is revealed, in which the original single-phase face-centered-cubic (FCC) structure partially transforms into alternating nanometer layers of a body-centered-cubic (BCC) structure. The orientation relationship follows the Nishiyama-Wasser-man relationship, that is, (011)BCC || ( 1¯1¯1)FCC and [100]BCC || [ 11¯0]FCC . Simulation results indicate that Cr, as a BCC stabilizing element, exhibits a tendency to segregate to the stacking faults (SFs). Furthermore, the high densities of SFs and twin boundaries in each nanocrystalline grain serve to accelerate the nucleation and growth of the BCC phase during irradiation. By adjusting the irradiation parameters, desired thicknesses of the FCC and BCC phases in the laminates can be achieved. This work demonstrates the controlled formation of an attractive dual-phase nanolaminate structure under ion irradiation and provides a strategy for designing new derivate structures of HEAs.

15.
ACS Omega ; 5(30): 19285-19292, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32775932

RESUMO

Pulsed laser-induced dewetting (PLiD) of Ag0.5Ni0.5 thin films results in phase-separated bimetallic nanoparticles with size distributions that depend on the initial thin film thickness. Co-sputtering of Ag and Ni is used to generate the as-deposited (AD) nanogranular supersaturated thin films. The magnetic and optical properties of the AD thin films and PLiD nanoparticles are characterized using a vibrating sample magnetometer, optical absorption spectroscopy, and electron energy loss spectroscopy (EELS). Magnetic measurements demonstrate that Ag0.5Ni0.5 nanoparticles are ferromagnetic at room temperature when the nanoparticle diameters are >20 nm and superparamagnetic <20 nm. Optical measurements show that all nanoparticle size distributions possess a local surface plasmon resonance (LSPR) peak that red-shifts with increasing diameter. Following PLiD, a Janus nanoparticle morphology is observed in scanning transmission electron microscopy, and low-loss EELS reveals size-dependent Ag and Ni LSPR dipole modes, while higher order modes appear only in the Ag hemisphere. PLiD of Ag-Ni thin films is shown to be a viable technique to generate bimetallic nanoparticles with both magnetic and plasmonic functionality.

16.
J Chem Phys ; 153(4): 044711, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752671

RESUMO

Stimulated electron energy loss and gain spectroscopy (sEELS and sEEGS) are used to image the nearfield of the bonding and antibonding localized surface plasmon resonance modes in nanorod dimers. A scanning transmission electron microscope equipped with an optical delivery system is used to simultaneously irradiate plasmonic nanorod dimers while electron energy loss and gain spectra of the active plasmons are collected. The length of the nanorod dimer is varied such that the bonding and antibonding modes are resonant with the laser energy. The optically bright bonding mode is clearly observed in the resonant sEEG spectrum images and, consistent with spontaneous EELS, no direct evidence of the hot spot is observed in sEEG. s-polarized irradiation does not stimulate the energy gain of the optically dark antibonding mode. However, when phase retardation is introduced by tilting the longitudinal axis, the otherwise dark antibonding mode becomes sEEG active.

17.
Sci Rep ; 10(1): 12537, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32719406

RESUMO

Continuous wave (cw) photon stimulated electron energy loss and gain spectroscopy (sEELS and sEEGS) is used to image the near field of optically stimulated localized surface plasmon resonance (LSPR) modes in nanorod antennas. An optical delivery system equipped with a nanomanipulator and a fiber-coupled laser diode is used to simultaneously irradiate plasmonic nanostructures in a (scanning) transmission electron microscope. The nanorod length is varied such that the m = 1, 2, and 3 LSPR modes are resonant with the laser energy and the optically stimulated near field spectra and images of these modes are measured. Various nanorod orientations are also investigated to explore retardation effects. Optical and electron beam simulations are used to rationalize the observed patterns. As expected, the odd modes are optically bright and result in observed sEEG responses. The m = 2 dark mode does not produce a sEEG response, however, when tilted such that retardation effects are operative, the sEEG signal emerges. Thus, we demonstrate that cw sEEGS is an effective tool in imaging the near field of the full set of nanorod plasmon modes of either parity.

19.
Micromachines (Basel) ; 11(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455865

RESUMO

The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

20.
Adv Mater ; 32(19): e1906238, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32173918

RESUMO

Two-dimensional (2D) palladium diselenide (PdSe2 ) has strong interlayer coupling and a puckered pentagonal structure, leading to remarkable layer-dependent electronic structures and highly anisotropic in-plane optical and electronic properties. However, the lack of high-quality, 2D PdSe2 crystals grown by bottom-up approaches limits the study of their exotic properties and practical applications. In this work, chemical vapor deposition growth of highly crystalline few-layer (≥2 layers) PdSe2 crystals on various substrates is reported. The high quality of the PdSe2 crystals is confirmed by low-frequency Raman spectroscopy, scanning transmission electron microscopy, and electrical characterization. In addition, strong in-plane optical anisotropy is demonstrated via polarized Raman spectroscopy and second-harmonic generation maps of the PdSe2 flakes. A theoretical model based on kinetic Wulff construction theory and density functional theory calculations is developed and described the observed evolution of "square-like" shaped PdSe2 crystals into rhombus due to the higher nucleation barriers for stable attachment on the (1,1) and (1,-1) edges, which results in their slower growth rates. Few-layer PdSe2 field-effect transistors reveal tunable ambipolar charge carrier conduction with an electron mobility up to ≈294 cm2 V-1 s-1 , which is comparable to that of exfoliated PdSe2 , indicating the promise of this anisotropic 2D material for electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...