Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1857, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35387991

RESUMO

Cryo-FIB/SEM combined with cryo-ET has emerged from within the field of cryo-EM as the method for obtaining the highest resolution structural information of complex biological samples in-situ in native and non-native environments. However, challenges remain in conventional cryo-FIB/SEM workflows, including milling thick specimens with vitrification issues, specimens with preferred orientation, low-throughput when milling small and/or low concentration specimens, and specimens that distribute poorly across grid squares. Here we present a general approach called the 'Waffle Method' which leverages high-pressure freezing to address these challenges. We illustrate the mitigation of these challenges by applying the Waffle Method and cryo-ET to reveal the macrostructure of the polar tube in microsporidian spores in multiple complementary orientations, which was previously not possible due to preferred orientation. We demonstrate the broadness of the Waffle Method by applying it to three additional cellular samples and a single particle sample using a variety of cryo-FIB-milling hardware, with manual and automated approaches. We also present a unique and critical stress-relief gap designed specifically for waffled lamellae. We propose the Waffle Method as a way to achieve many advantages of cryo-liftout on the specimen grid while avoiding the long, challenging, and technically-demanding process required for cryo-liftout.


Assuntos
Tomografia com Microscopia Eletrônica , Alimentos , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Congelamento , Fluxo de Trabalho
2.
J Cachexia Sarcopenia Muscle ; 13(1): 454-466, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35001540

RESUMO

BACKGROUND: The role of Numb, a protein that is important for cell fate and development and that, in human muscle, is expressed at reduced levels with advanced age, was investigated; adult mice skeletal muscle and its localization and function within myofibres were determined. METHODS: Numb expression was evaluated by western blot. Numb localization was determined by confocal microscopy. The effects of conditional knock out (cKO) of Numb and the closely related gene Numb-like in skeletal muscle fibres were evaluated by in situ physiology, transmission and focused ion beam scanning electron microscopy, three-dimensional reconstruction of mitochondria, lipidomics, and bulk RNA sequencing. Additional studies using primary mouse myotubes investigated the effects of Numb knockdown on cell fusion, mitochondrial function, and calcium transients. RESULTS: Numb protein expression was reduced by ~70% (P < 0.01) at 24 as compared with 3 months of age in gastrocnemius and tibialis anterior muscle. Numb was localized within muscle fibres as bands traversing fibres at regularly spaced intervals in close proximity to dihydropyridine receptors. The cKO of Numb and Numb-like reduced specific tetanic force by 36% (P < 0.01), altered mitochondrial spatial relationships to sarcomeric structures, increased Z-line spacing by 30% (P < 0.0001), perturbed sarcoplasmic reticulum organization and reduced mitochondrial volume by over 80% (P < 0.01). Only six genes were differentially expressed in cKO mice: Itga4, Sema7a, Irgm2, Vezf1, Mib1, and Tmem132a. Several lipid mediators derived from polyunsaturated fatty acids through lipoxygenases were up-regulated in Numb cKO skeletal muscle: 12-HEPE was increased by ~250% (P < 0.05) and 17,18-EpETE by ~240% (P < 0.05). In mouse primary myotubes, Numb knockdown reduced cell fusion (~20%, P < 0.01) and delayed the caffeine-induced rise in cytosolic calcium concentrations by more than 100% (P < 0.01). CONCLUSIONS: These findings implicate Numb as a critical factor in skeletal muscle structure and function and suggest that Numb is critical for calcium release. We therefore speculate that Numb plays critical roles in excitation-contraction coupling, one of the putative targets of aged skeletal muscles. These findings provide new insights into the molecular underpinnings of the loss of muscle function observed with sarcopenia.


Assuntos
Proteínas de Membrana , Músculo Esquelético , Proteínas do Tecido Nervoso , Retículo Sarcoplasmático , Animais , Cálcio/metabolismo , Acoplamento Excitação-Contração , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retículo Sarcoplasmático/metabolismo
3.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32386575

RESUMO

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Microscopia Crioeletrônica/métodos , Glicosiltransferases/metabolismo , Mycobacterium smegmatis/enzimologia , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/genética , Domínio Catalítico , Parede Celular/metabolismo , Galactanos/metabolismo , Glicosiltransferases/genética , Lipopolissacarídeos/metabolismo , Mutação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crescimento & desenvolvimento , Filogenia , Conformação Proteica , Especificidade por Substrato
4.
Elife ; 82019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30648972

RESUMO

The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases, but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here, we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.


Assuntos
Aspergillus fumigatus/metabolismo , Cálcio/farmacologia , Proteínas Fúngicas/metabolismo , Lipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Aspergillus fumigatus/efeitos dos fármacos , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Ceramidas/farmacologia , Proteínas Fúngicas/química , Ligantes , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Nanopartículas/química , Proteínas de Transferência de Fosfolipídeos/química , Conformação Proteica
5.
Front Mol Biosci ; 5: 50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951483

RESUMO

Cryo electron microscopy facilities running multiple instruments and serving users with varying skill levels need a robust and reliable method for benchmarking both the hardware and software components of their single particle analysis workflow. The workflow is complex, with many bottlenecks existing at the specimen preparation, data collection and image analysis steps; the samples and grid preparation can be of unpredictable quality, there are many different protocols for microscope and camera settings, and there is a myriad of software programs for analysis that can depend on dozens of settings chosen by the user. For this reason, we believe it is important to benchmark the entire workflow, using a standard sample and standard operating procedures, on a regular basis. This provides confidence that all aspects of the pipeline are capable of producing maps to high resolution. Here we describe benchmarking procedures using a test sample, rabbit muscle aldolase.

6.
Cell ; 171(2): 414-426.e12, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985564

RESUMO

Prokaryotic cells possess CRISPR-mediated adaptive immune systems that protect them from foreign genetic elements, such as invading viruses. A central element of this immune system is an RNA-guided surveillance complex capable of targeting non-self DNA or RNA for degradation in a sequence- and site-specific manner analogous to RNA interference. Although the complexes display considerable diversity in their composition and architecture, many basic mechanisms underlying target recognition and cleavage are highly conserved. Using cryoelectron microscopy (cryo-EM), we show that the binding of target double-stranded DNA (dsDNA) to a type I-F CRISPR system yersinia (Csy) surveillance complex leads to large quaternary and tertiary structural changes in the complex that are likely necessary in the pathway leading to target dsDNA degradation by a trans-acting helicase-nuclease. Comparison of the structure of the surveillance complex before and after dsDNA binding, or in complex with three virally encoded anti-CRISPR suppressors that inhibit dsDNA binding, reveals mechanistic details underlying target recognition and inhibition.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/ultraestrutura , DNA Viral/química , Modelos Químicos , Modelos Moleculares , Complexos Multiproteicos/química , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...