Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 929160, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020981

RESUMO

In-barn heat processing of mass swine mortalities to inactivate pathogens could facilitate more carcass disposal options and reduce the risk of pathogen spread in the event of a foreign animal disease (FAD) outbreak. A 12.2 × 12.2 × 2.4 m (W × L × H) heat processing room was created using a temporary wall inside a de-commissioned commercial gestation barn in northwest Iowa. Eighteen swine carcasses (six per group) divided into three weight groups (mean ± SD initial carcass weights: 31.8 ± 3.3, 102.7 ± 8.1, and 226.3 ± 27.6 kg) were randomly assigned a location inside the room. Three carcasses per weight group were placed directly on concrete slats and on a raised platform. One carcass per weight group and placement (n=6) was instrumented with five temperature sensors, inserted into the brain, pleura, peritoneal, ham, and bone marrow of the femur, and a sensor was attached directly to the skin surface. Environmental conditions (ambient and room) and carcass temperatures were collected at 15-min intervals. Carcasses were subjected to an average room temperature of 57.3 ± 1.2°C for 14 days. The average (±SD) reduction from initial weight for the carcasses on slats was 45.0 ± 4.70% (feeder), 33.0 ± 8.30% (market), and 34.0 ± 15.80% (sow), and for the carcasses on a raised platform, it was 39.0 ± 6.80% (feeder), 49.0 ± 11.30% (market), and 45.0 ± 6.70% (sow). There was a significant interaction between carcass placement (slats and raised) and carcass weight loss for the market weight group. When average carcass surface temperature was at 40.6, 43.3, and 46.1°C (data grouped for analysis), the average internal carcass temperature for most measurement locations was significantly different across carcass weight groups and between the carcasses on a raised platform and those on slats. This preliminary analysis of carcass weight loss, leachate production, and temperature variation in carcasses of different sizes can be used for planning and evaluating mass swine mortality management strategies.

2.
Transl Anim Sci ; 5(4): txab225, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34993422

RESUMO

Coronavirus Disease 2019 (COVID-19) was declared a global pandemic on March 11, 2020 by the World Health Organization and its impact on animal agriculture in the United States was undeniable. By April, COVID-19 resulted in the simultaneous closure or reduced operations of many meat processing plants in the upper Midwest, leading to supply chain disruptions. In Iowa, the leading pork production and processing state, these disruptions caused producer uncertainty, confusion, and stress, including time-sensitive challenges for maintaining animal care. The Iowa Resource Coordination Center (IRCC) was quickly created and launched by the Iowa Department of Agriculture and Land Stewardship (IDALS). The IRCC included public representation from the Iowa Pork Producers Association (IPPA), Iowa Pork Industry Center (IPIC), and Iowa State University Extension and Outreach, and private partners including producers, veterinarians, and technical specialists. Supporting swine welfare, the IRCC provided information on management strategies, dietary alterations to slow pig growth, alternative markets, on-farm euthanasia, and mass depopulation under veterinary oversight. In a crisis, Iowa created a model that reacted to producers' pragmatic, mental and emotional needs. This model could be quickly replicated with an introduction of foreign animal disease.

3.
Transl Anim Sci ; 2(3): 298-310, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32289107

RESUMO

The objectives of this experiment were to evaluate the effects of alternatives to antibiotic growth promoters (AGP), two group sizes, and their interaction on nursery pig performance to serve as a model for future AGP alternative studies. A 41-d experiment was conducted in a commercial wean-to-finish barn; 1,300 piglets weaned at 21 d of age (weaned 2 or 4 d prior to experiment; 6.14 ± 0.18 kg BW; PIC 1050 sows and multiple sire lines) were blocked by sire, sex, and weaning date, then assigned to eight treatments: four dietary treatments each evaluated across two group sizes. The four dietary treatments were: negative control (NC), positive control (PC; NC + in-feed antibiotics), zinc oxide plus a dietary acidifier (blend of fumaric, citric, lactic, and phosphoric acid) (ZA; NC + ZnO + acid), and a Bacillus-based direct-fed-microbial (DFM) plus resistant potato starch (RS) (DR; NC + DFM + RS). The two group sizes were 31 or 11 pigs/pen; floor space was modified so area/pig was equal between the group sizes (0.42 m2/pig). There were 7 pens/diet with 11 pigs/pen and 8 pens/diet with 31 pigs/pen. Data were analyzed as a randomized complete block design with pen as the experimental unit. Diagnostic assessment of oral fluids, serum, and tissue samples was used to characterize health status. Pigs experienced natural challenges of acute diarrhea and septicemia in week 1 and porcine reproductive and respiratory syndrome virus (PRRSV) in weeks 4-6. There was a significant interaction between diet and group size for ADG (P = 0.012). PC increased ADG in large and small groups (P < 0.05) and ZA increased ADG only in large groups (P < 0.05). Small groups had improved ADG compared to large groups when fed NC or DR diets (P < 0.05). Similarly, PC increased ADFI (P < 0.05). Compared to NC, ZA improved ADFI in large groups only (P < 0.05; diet × group size: P = 0.015). Pigs fed PC had greater G:F than NC (P < 0.05), and small groups had greater G:F than large groups (P < 0.05). There was no effect of ZA or DR on G:F. Pigs fed PC required fewer individual medical treatments than NC and pigs fed ZA were intermediate (P = 0.024). More pigs were removed from large than small groups (P = 0.049), and there was no effect of diet on removals (P > 0.10). In conclusion, careful study design, protocol implementation, sample collection, and recording of important information allowed us to characterize the health status of this group of pigs and determine treatment effects on growth performance and morbidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...