Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; 40(1): 71-80, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32894710

RESUMO

Accurate gain control of PET detectors is a prerequisite for quantitative accuracy. A shift in the 511 keV peak position can lead to errors in scatter correction, degrading quantitation. The PET detectors in a PET/MR scanner are subject to thermal transients due to eddy currents induced during gradient-intensive MRI sequences. Since the gain of silicon photomultiplier-based detectors changes with temperature, good gain control is particularly challenging. In this paper we describe a method that utilizes information from the entire singles spectrum to create a real-time gain control method that maintains gain of PET detectors stable within approximately ±0.5% (±2.5 keV) with varying levels of scatter and in the presence of significant thermal transients. We describe the methods used to combine information about multiple peaks and how this algorithm is implemented in a way that permits real-time processing on a field-programmable gate array. Simulations demonstrate rapid response time and stability. A method ("virtual scatter filter") is also described that extracts unscattered photopeak events from phantom data and demonstrates the accuracy of the photopeak for various radionuclides that emit energies in addition to the pure 511 keV annihilation peak. Radionuclides 52 Mn, 55 Co, 64 Cu, 89 Zr, 90 Y, and 124 I are included in the study for their various forms of spectral contamination.


Assuntos
Tomografia por Emissão de Pósitrons , Radioisótopos , Algoritmos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
2.
Pharmaceuticals (Basel) ; 12(4)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717279

RESUMO

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.

3.
EJNMMI Res ; 9(1): 42, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31098710

RESUMO

BACKGROUND: In molecular imaging and nuclear medicine, theranostic agents that integrate radionuclide pairs are successfully being used for individualized care, which has led to rapidly growing interest in their continued development. These compounds, which are radiolabeled with one radionuclide for imaging and a chemically identical or similar radionuclide for therapy, may improve patient-specific treatment and outcomes by matching the properties of different radionuclides with a targeting vector for a particular tumor type. One proposed theranostic radionuclide is scandium-47 (47Sc, T1/2 = 3.35 days), which can be used for targeted radiotherapy and may be paired with the positron emitting radionuclides, 43Sc (T1/2 = 3.89 h) and 44Sc (T1/2 = 3.97 h) for imaging. The aim of this study was to investigate the photonuclear production of 47Sc via the 48Ti(γ,p)47Sc reaction using an electron linear accelerator (eLINAC), separation and purification of 47Sc, the radiolabeling of somatostatin receptor-targeting peptide DOTATOC with 47Sc, and in vitro receptor-mediated binding of [47Sc]Sc-DOTATOC in AR42J somatostatin receptor subtype two (SSTR2) expressing rat pancreatic tumor cells. RESULTS: The rate of 47Sc production in a stack of natural titanium foils (n = 39) was 8 × 107 Bq/mA·h (n = 3). Irradiated target foils were dissolved in 2.0 M H2SO4 under reflux. After dissolution, trivalent 47Sc ions were separated from natural Ti using AG MP-50 cation exchange resin. The recovered 47Sc was then purified using CHELEX 100 ion exchange resin. The average decay-corrected two-step 47Sc recovery (n = 9) was (77 ± 7)%. A radiolabeling yield of > 99.9% of [47Sc]Sc-DOTATOC (0.384 mg in 0.3 mL) was achieved using 1.7 MBq of 47Sc. Blocking studies using Octreotide illustrated receptor-mediated uptake of [47Sc]Sc-DOTATOC in AR42J cells. CONCLUSIONS: 47Sc can be produced via the 48Ti(γ,p)47Sc reaction and separated from natural Ti targets with a yield and radiochemical purity suitable for radiolabeling of peptides for in vitro studies. The data in this work supports the potential use of eLINACs for studies of photonuclear production of medical radionuclides and the future development of high-intensity eLINAC facilities capable of producing relevant quantities of carrier-free radionuclides currently inaccessible via routine production pathways or limited due to costly enriched targets.

4.
Bioorg Med Chem ; 27(3): 492-501, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594453

RESUMO

The somatostatin receptor subtype 2 (SSTR2) is often highly expressed on neuroendocrine tumors (NETs), making it a popular in vivo target for diagnostic and therapeutic approaches aimed toward management of NETs. In this work, an antagonist peptide (sst2-ANT) with high affinity for SSTR2 was modified at the N-terminus with a novel [N,S,O] bifunctional chelator (2) designed for tridentate chelation of rhenium(I) and technetium(I) tricarbonyl cores, [Re(CO)3]+ and [99mTc][Tc(CO)3]+. The chelator-peptide conjugation was performed via a Cu(I)-assisted click reaction of the alkyne-bearing chelator (2) with an azide-functionalized sst2-ANT peptide (3), to yield NSO-sst2-ANT (4). Two synthetic methods were used to prepare Re-4 at the macroscopic scale, which differed based on the relative timing of the click conjugation to the [Re(CO)3]+ complexation by 2. The resulting products demonstrated the expected molecular mass and nanomolar in vitro SSTR2 affinity (IC50 values under 30 nM, AR42J cells, [125I]iodo-Tyr11-somatostatin-14 radioligand standard). However, a difference in their HPLC retention times suggested a difference in metal coordination modes, which was attributed to a competing N-triazole donor ligand formed during click conjugation. Surprisingly, the radiotracer scale reaction of [99mTc][Tc(OH2)3(CO)3]+ (99mTc; t½â€¯= 6 h, 141 keV γ) with 4 formed a third product, distinct from the Re analogues, making this one of the unusual cases in which Re and Tc chemistries are not well matched. Nevertheless, the [99mTc]Tc-4 product demonstrated excellent in vitro stability to challenges by cysteine and histidine (≥98% intact through 24 h), along with 75% stability in mouse serum through 4 h. In vivo biodistribution and microSPECT/CT imaging studies performed in AR42J tumor-bearing mice revealed improved clearance of this radiotracer in comparison to a similar [99mTc][Tc(CO)3]-labeled sst2-ANT derivative previously studied. Yet despite having adequate tumor uptake at 1 h (4.9% ID/g), tumor uptake was not blocked by co-administration of a receptor-saturating dose of SS-14. Aimed toward realignment of the Re and Tc product structures, future efforts should include distancing the alkyne group from the intended donor atoms of the chelator, to reduce the coordination options available to the [M(CO)3]+ core (M = Re, 99mTc) by disfavoring involvement of the N-triazole.


Assuntos
Quelantes/farmacologia , Compostos Organometálicos/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Receptores de Somatostatina/antagonistas & inibidores , Rênio/farmacologia , Tecnécio/farmacologia , Animais , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/química , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/metabolismo , Imagem Óptica , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Receptores de Somatostatina/metabolismo , Rênio/química , Relação Estrutura-Atividade , Tecnécio/química , Distribuição Tecidual
5.
Bioconjug Chem ; 29(12): 4040-4049, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30412382

RESUMO

With the long-term goal of developing theranostic agents for applications in nuclear medicine, in this work we evaluated the well-known NOTA and NODAGA chelators as bifunctional chelators (BFCs) for the [99mTc/186Re]Tc/Re-tricarbonyl core. In particular, we report model complexes of the general formula fac-[M(L)(CO)3]+ (M = Re, 99mTc, 186Re) where L denotes NOTA-Pyr (1) or NODAGA-Pyr (2), which are derived from conjugation of NOTA/NODAGA with pyrrolidine (Pyr). Further, as proof-of-principle, we synthesized the peptide bioconjugate NODAGA-sst2-ANT (3) and explored its complexation with the fac-[Re(CO)3]+ and fac-[99mTc][Tc(CO)3]+ cores; sst2-ANT denotes the somatostatin receptor (SSTR) antagonist 4-NO2-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH2. Rhenium complexes Re-1 through Re-3 were synthesized and characterized spectroscopically, and receptor binding affinity was demonstrated for Re-3 in SSTR-expressing cells (AR42J, IC50 = 91 nM). Radiolabeled complexes [99mTc]Tc/[186Re]Re-1/2 and [99mTc]Tc-3 were prepared in high radiochemical yield (>90%, determined by radio-HPLC) by reacting [99mTc]/[186Re][Tc/Re(OH2)3(CO)3]+ with 1-3 and correlated well with the respective Re-1 through Re-3 standards in comparative HPLC studies. All radiotracers remained intact through 24 h (99mTc-labeled complexes) or 48 h (186Re-labeled complexes) against 1 mM l-histidine and 1 mM l-cysteine (pH 7.4, 37 °C). Similarly, rat serum stability studies displayed no decomposition and low nonspecific binding of 9-24% through 4 h. Biodistribution of [99mTc]Tc-3 in healthy CF-1 mice demonstrated a favorable pharmacokinetic profile. Rapid clearance was observed within 1 h post-injection, predominantly via the renal system (82% of the injected dose was excreted in urine by 1 h), with low kidney retention (% ID/g: 11 at 1 h, 5 at 4 h, and 1 at 24 h) and low nonspecific uptake in other organs/tissues. Our findings establish NOTA and NODAGA as outstanding BFCs for the fac-[M(CO)3]+ core in the design and development of organometallic radiopharmaceuticals. Future in vivo studies of [99mTc]Tc- and [186Re]Re-tricarbonyl complexes of NODAGA/NOTA-biomolecule conjugates will further probe the potential of these chelates for nuclear medicine applications in diagnostic imaging and targeted radiotherapy, respectively.


Assuntos
Acetatos/química , Complexos de Coordenação/química , Compostos Heterocíclicos com 1 Anel/química , Compostos de Organotecnécio/química , Compostos Radiofarmacêuticos/química , Receptores de Somatostatina/química , Rênio/química , Animais , Quelantes/química , Cromatografia Líquida de Alta Pressão/métodos , Rim/metabolismo , Camundongos , Compostos Radiofarmacêuticos/sangue , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Distribuição Tecidual
6.
J Vis Exp ; (132)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29443084

RESUMO

We demonstrate a scalable method for the separation of the bacterial periplasm from the cytoplasm. This method is used to purify periplasmic protein for the purpose of biophysical characterization, and measure substrate transfer between periplasmic and cytoplasmic compartments. By carefully limiting the time that the periplasm is separated from the cytoplasm, the experimenter can extract the protein of interest and assay each compartment individually for substrate without carry-over contamination between compartments. The extracted protein from fractionation can then be further analyzed for three-dimensional structure determination or substrate-binding profiles. Alternatively, this method can be performed after incubation with a radiotracer to determine total percent uptake, as well as distribution of the tracer (and hence metal transport) across different bacterial compartments. Experimentation with a radiotracer can help differentiate between a physiological substrate and artefactual substrate, such as those caused by mismetallation. X-ray fluorescence can be used to discover the presence or absence of metal incorporation in a sample, as well as measure changes that may occur in metal incorporation as a product of growth conditions, purification conditions, and/or crystallization conditions. X-ray fluorescence also provides a relative measure of abundance for each metal, which can be used to determine the best metal energy absorption peak to use for anomalous X-ray scattering data collection. Radiometal uptake can be used as a method to validate the physiological nature of a substrate detected by X-ray fluorescence, as well as support the discovery of novel substrates.


Assuntos
Fracionamento Celular/métodos , Bactérias Gram-Negativas/patogenicidade , Metais/química , Radioisótopos/uso terapêutico , Espectrometria por Raios X/métodos , Metais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...