Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(29): 13191-13196, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38984973

RESUMO

Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.


Assuntos
Campylobacter jejuni , Domínio Catalítico , Nitrato Redutase , Campylobacter jejuni/enzimologia , Nitrato Redutase/química , Nitrato Redutase/metabolismo , Modelos Moleculares , Espectroscopia por Absorção de Raios X
2.
J Biol Inorg Chem ; 29(4): 395-405, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782786

RESUMO

Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.


Assuntos
Campylobacter jejuni , Lisina , Nitrato Redutase , Lisina/metabolismo , Lisina/química , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Nitrato Redutase/metabolismo , Nitrato Redutase/química , Nitrato Redutase/genética , Periplasma/metabolismo , Periplasma/enzimologia , Biocatálise
3.
Molecules ; 27(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35208951

RESUMO

A 24 kDa leucine-rich protein from ion exchange fractions of Solanum trilobatum, which has anti-bacterial activity against both the Gram-negative Vibrio cholerae and Gram-positive Staphylococcus aureus bacteria has been purified. In this study, mass spectrometry analysis identified the leucine richness and found a luminal binding protein (LBP). Circular dichroism suggests that the protein was predominantly composed of α- helical contents of its secondary structure. Scanning electron microscopy visualized the characteristics and morphological and structural changes in LBP-treated bacterium. Further in vitro studies confirmed that mannose-, trehalose- and raffinose-treated LBP completely inhibited the hemagglutination ability towards rat red blood cells. Altogether, these studies suggest that LBP could bind to sugar moieties which are abundantly distributed on bacterial surface which are essential for maintaining the structural integrity of bacteria. Considering that Solanum triolbatum is a well-known medicinal and edible plant, in order to shed light on its ancient usage in this work, an efficient anti-microbial protein was isolated, characterized and its in vitro functional study against human pathogenic bacteria was evaluated.


Assuntos
Antibacterianos , Folhas de Planta/química , Proteínas de Plantas , Solanum/química , Staphylococcus aureus/crescimento & desenvolvimento , Vibrio cholerae/crescimento & desenvolvimento , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia
4.
Environ Sci Technol ; 55(9): 6485-6494, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33851826

RESUMO

Synthetic aromatic arsenicals such as roxarsone (Rox(V)) and nitarsone (Nit(V)) have been used as animal growth enhancers and herbicides. Microbes contribute to redox cycling between the relatively less toxic pentavalent and highly toxic trivalent arsenicals. In this study, we report the identification of nemRA operon from Enterobacter sp. Z1 and show that it is involved in trivalent organoarsenical oxidation. Expression of nemA is induced by chromate (Cr(VI)), Rox(III), and Nit(III). Heterologous expression of NemA in Escherichia coli confers resistance to Cr(VI), methylarsenite (MAs(III)), Rox(III), and Nit(III). Purified NemA catalyzes simultaneous Cr(VI) reduction and MAs(III)/Rox(III)/Nit(III) oxidation, and oxidation was enhanced in the presence of Cr(VI). The results of electrophoretic mobility shift assays and fluorescence assays demonstrate that the transcriptional repressor, NemR, binds to either Rox(III) or Nit(III). NemR has three conserved cysteine residues, Cys21, Cys106, and Cys116. Mutation of any of the three resulted in loss of response to Rox(III)/Nit(III), indicating that they form an Rox(III)/Nit(III) binding site. These results show that NemA is a novel trivalent organoarsenical oxidase that is regulated by the trivalent organoarsenical-selective repressor NemR. This discovery expands our knowledge of the molecular mechanisms of organoarsenical oxidation and provides a basis for studying the redox coupling of environmental toxic compounds.


Assuntos
Arsenicais , Herbicidas , Roxarsona , Animais , Escherichia coli/genética , Oxirredução , Oxirredutases
5.
Mol Microbiol ; 116(2): 427-437, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786926

RESUMO

The ant operon of the antimony-mining bacterium Comamonas testosterone JL40 confers resistance to Sb(III). The operon is transcriptionally regulated by the product of the first gene in the operon, antR. AntR is a member of ArsR/SmtB family of metal/metalloid-responsive repressors resistance. We purified and characterized C. testosterone AntR and demonstrated that it responds to metalloids in the order Sb(III) = methylarsenite (MAs(III) >> As(III)). The protein was crystallized, and the structure was solved at 2.1 Å resolution. The homodimeric structure of AntR adopts a classical ArsR/SmtB topology architecture. The protein has five cysteine residues, of which Cys103a from one monomer and Cys113b from the other monomer, are proposed to form one Sb(III) binding site, and Cys113a and Cys103b forming a second binding site. This is the first report of the structure and binding properties of a transcriptional repressor with high selectivity for environmental antimony.


Assuntos
Antimônio/farmacologia , Arsênio/farmacologia , Comamonas testosteroni/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Arsenicais/farmacologia , Sítios de Ligação , Comamonas testosteroni/efeitos dos fármacos , Comamonas testosteroni/genética , Regulação Bacteriana da Expressão Gênica/genética , Conformação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica/genética
6.
J Nat Prod ; 83(9): 2809-2813, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32830503

RESUMO

Arsinothricin [AST (1)], a new broad-spectrum organoarsenical antibiotic, is a nonproteinogenic analogue of glutamate that effectively inhibits glutamine synthetase. We report the chemical synthesis of an intermediate in the pathway to 1, hydroxyarsinothricin [AST-OH (2)], which can be converted to 1 by enzymatic methylation catalyzed by the ArsM As(III) S-adenosylmethionine methyltransferase. This is the first report of semisynthesis of 1, providing a source of this novel antibiotic that will be required for future clinical trials.


Assuntos
Antibacterianos/síntese química , Arsenicais/síntese química , Antibacterianos/farmacologia , Arsenicais/farmacologia , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , S-Adenosilmetionina/antagonistas & inibidores
7.
Interdiscip Sci ; 4(1): 74-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22392278

RESUMO

Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Genome analysis of the glycolytic/gluconeogenic pathway has revealed that wBm lacks pyruvate kinase (PK) and may instead utilize the enzyme pyruvate phosphate dikinase (PPDK; ATP: pyruvate, orthophosphate phosphotransferase, EC 2.7.9.1). PPDK catalyses the reversible conversion of AMP, PPi and phosphoenolpyruvate into ATP, Pi and pyruvate. Most organisms including mammals exclusively possess PK. Therefore the absence of PPDK in mammals makes this enzyme as attractive wolbachia drug target. In the present study we have modeled the three dimensional structure of wBm PPDK. The template with 50% identity and 67% similarity in amino acid sequence was employed for homology-modeling approach. The putative active site consists of His476, Arg360, Glu358, Asp344, Arg112, Lys43 and Glu346 was selected as site of interest for designing suitable inhibitor molecules. Docking studies were carried out using induced fit algorithms with OPLS force field of Schrödinger's Glide. The lead molecules which inhibit the PPDK activity are taken from the small molecule library (Pubchem database) and the interaction analysis showed that these compounds may inhibit the function of PPDK in wBm.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brugia Malayi , Desenho de Fármacos , Filariose/microbiologia , Piruvato Ortofosfato Diquinase/genética , Wolbachia/genética , Algoritmos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , DNA Bacteriano , Bases de Dados Factuais , Genoma Bacteriano , Gluconeogênese/genética , Glicólise/genética , Modelos Moleculares , Dados de Sequência Molecular , Piruvato Ortofosfato Diquinase/metabolismo , Homologia de Sequência , Transdução de Sinais/genética , Simbiose , Wolbachia/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...