Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 13(9): 1834-1852, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177015

RESUMO

Motivated by recent experimental studies of rheological hysteresis in soft glassy materials, we study numerically strain rate sweeps in simple yield stress fluids and viscosity bifurcating yield stress fluids. Our simulations of downward followed by upward strain rate sweeps, performed within fluidity models and the soft glassy rheology model, successfully capture the experimentally observed monotonic decrease of the area of the rheological hysteresis loop with sweep time in simple yield stress fluids, and the bell shaped dependence of hysteresis loop area on sweep time in viscosity bifurcating fluids. We provide arguments explaining these two different functional forms in terms of differing tendencies of simple and viscosity bifurcating fluids to form shear bands during the sweeps, and show that the banding behaviour captured by our simulations indeed agrees with that reported experimentally. We also discuss the difference in hysteresis behaviour between inelastic and viscoelastic fluids. Our simulations qualitatively agree with the experimental data discussed here for four different soft glassy materials.

2.
Phys Rev Lett ; 117(18): 188001, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835024

RESUMO

We study shear banding in soft glassy materials subject to a large amplitude oscillatory shear flow (LAOS). By numerical simulations of the widely used soft glassy rheology model, supplemented by more general physical arguments, we demonstrate strong banding over an extensive range of amplitudes and frequencies of the imposed shear rate γ[over ˙](t)=γ[over ˙]_{0}cos(ωt), even in materials that do not permit banding as their steady state response to a steadily imposed shear flow γ[over ˙]=γ[over ˙]_{0}=const. Highly counterintuitively, banding persists in LAOS even in the limit of zero frequency ω→0, where one might a priori have expected a homogeneous flow response in a material that does not display banding under conditions of steadily imposed shear. We explain this finding in terms of an alternating competition within each cycle between glassy aging and flow rejuvenation. Our predictions have far-reaching implications for the flow behavior of aging yield stress fluids, suggesting a generic expectation of shear banding in flows of even arbitrarily slow time variation.

3.
J Chem Phys ; 142(14): 144901, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25877591

RESUMO

Polyelectrolytes, polymers in poor solvents, polymers mixed with particles, and other systems with attractions and repulsions show formation of globules/structures in equilibrium or in flow. To study the flow behavior of such systems, we developed a simple coarse-grained model with short ranged attractions and repulsions. Polymers are represented as charged bead-spring chains and they interact with oppositely charged colloids. Neglecting hydrodynamic interactions, we study the formation of compact polymer structures called globules. Under certain conditions, increase in shear rate decreases the mean first passage time to form a globule. At other conditions, shear flow causes the globules to breakup, similar to the globule-stretch transition of polymers in poor solvents.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23944485

RESUMO

Long flexible polymers undergo a coil to stretch transition (CST) in an elongational flow. Near the CST, a peak can be observed in the fluctuations of the size of a molecule (|R|). Solvent effects on the fluctuations are studied using Brownian dynamics simulations of a nonlinear spring force relation that can represent real molecules. Ignoring the influence of hydrodynamic interactions, a linear region in the spring force relation is known to cause the peak in |R| fluctuations. In contrast, we find that a peak in the fluctuations can be obtained even for the nonlinear spring force relation. We analyze the influence of hydrodynamic interactions on the fluctuations using a dumbbell model with a conformation-dependent drag coefficient.


Assuntos
Modelos Moleculares , Dinâmica não Linear , Polímeros/química , Solventes/química , Hidrodinâmica , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...