Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Indian J Hematol Blood Transfus ; : 1-5, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36590655

RESUMO

Polatuzumab vedotin is a novel immunotherapy antibody-drug conjugate targeting CD79b. It has been used in relapsed/refractory (R/R) large B-cell lymphomas since its FDA approval in 2019. Presently, this drug is unaffordable or unavailable for patients in Lower-Middle Income Countries (LMIC) like India. This is a retrospective study of adult (> 18 years) patients with R/R large B-cell lymphoma failing two prior lines of therapy, who received Polatuzumab based salvage therapy on a compassionate or named-patient access program. Between May 2019 and April 2022, 10 patients received Polatuzumab vedotin, and 9 were evaluable. The most common regimen used was Polatuzumab-Bendamustine-Rituximab. Out of 43 infusions administered, the adverse event profile was manageable [One grade-2 infusion reaction, 4 patients developed grade 3-4 hematological toxicity and none had grade 3-4 non-hematological toxicities]. Ten infusions were administered in the day care service. After a median of 4.5 cycles (range 1-8), 4 patients achieved CR, 2 had partial response (PR), and 3 had progressive disease (PD). With a median follow up of 491 days (range 8-1048 days), four patients are alive (three in CR and one in PR), three patients have died and three patients were lost to follow up. Early real-world experience from a LMIC setting demonstrates feasibility and a favourable safety profile of Polatuzumab vedotin based approach, along with encouraging response rates in a subset of patients.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-417519

RESUMO

During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying Variants Of Concern (VOC). Besides, viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host Single Nucleotide Variations (iSNVs). Analysing 1, 347 samples collected till June 2020, we recorded 18, 146 iSNV sites throughout the SARS-CoV-2 genome. Both, mutations in RdRp as well as APOBEC and ADAR mediated RNA editing seem to contribute to the differential prevalence of iSNVs in hosts. Noteworthy, 41% of all unique iSNVs were reported as SNVs by 30th September 2020 in samples submitted to GISAID, which increased to [~]80% by 30th June 2021. Following this, analysis of another set of 1, 798 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) variations appeared as iSNVs before getting fixed in the population. We also observe hyper-editing events at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=177 SRC="FIGDIR/small/417519v3_ufig1.gif" ALT="Figure 1"> View larger version (41K): org.highwire.dtl.DTLVardef@12b6ac2org.highwire.dtl.DTLVardef@16df897org.highwire.dtl.DTLVardef@dbbec2org.highwire.dtl.DTLVardef@c8de14_HPS_FORMAT_FIGEXP M_FIG C_FIG

3.
Sci Rep ; 9(1): 10084, 2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31300732

RESUMO

We recently identified inhibitors targeting Mycobacterium marinum MelF (Rv1936) by in silico analysis, which exhibited bacteriostatic/bactericidal activity against M. marinum and M. tuberculosis in vitro. Herein, we evaluated the effect of best four inhibitors (# 5175552, # 6513745, # 5255829, # 9125618) obtained from the ChemBridge compound libraries, on intracellular replication and persistence of bacteria within IFN-γ activated murine RAW264.7 and human THP-1 macrophages infected with M. marinum. Inhibitors # 5175552 and # 6513745 significantly reduced (p < 0.05) the intracellular replication of bacilli during day 7 post-infection (p.i.) within RAW264.7 and THP-1 macrophages infected at multiplicity of infection (MOI) of ~1.0. These observations were substantiated by electron microscopy, which revealed the protective effect of # 5175552 in clearing the bacilli inside murine macrophages. Strikingly, # 6513745 displayed synergism with isoniazid against M. marinum in murine macrophages, whereas # 5175552 significantly suppressed (p < 0.05) the persistent bacilli during day 10-14 p.i. in infected RAW264.7 and THP-1 macrophages (MOI of ~ 0.1). Moreover, # 5175552 and # 6513745 were non-cytotoxic to host macrophages at both 1X and 5X MIC. Further validation of these inhibitors against M. tuberculosis-infected macrophages and animal models has potential for development as novel anti-tubercular agents.


Assuntos
Antituberculosos/farmacologia , Macrófagos/microbiologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Mycobacterium marinum/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Sinergismo Farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferon gama/genética , Interferon gama/imunologia , Isoniazida/farmacologia , Ativação de Macrófagos/imunologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...