Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(34): e202304771, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37166141

RESUMO

Design, synthesis and application of benzene bioisosteres have attracted a lot of attention in the past 20 years. Recently, bicyclo[2.1.1]hexanes have emerged as highly attractive bioisosteres for ortho- and meta-substituted benzenes. Herein we report a mild, scalable and transition-metal-free protocol for the construction of highly substituted bicyclo[2.1.1]hexan-2-ones through Lewis acid catalyzed (3+2)-cycloaddition of bicyclo[1.1.0]-butane ketones with disubstituted ketenes. The reaction shows high functional group tolerance as documented by the successful preparation of various 3-alkyl-3-aryl as well as 3,3-bisalkyl bicyclo[2.1.1]hexan-2-ones (26 examples, up to 89 % yield). Postfunctionalization of the exocyclic ketone moiety is also demonstrated.

2.
Nat Commun ; 13(1): 3083, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655065

RESUMO

The arylation of carboxylic acid derivatives via Smiles rearrangement has gained great interest in recent years. Both radical and ionic approaches, as well as radical-polar crossover concepts, have been developed. In contrast, a reversed polar-radical crossover approach remains underexplored. Here we report a simple, efficient and scalable method for the preparation of sterically hindered and valuable α-quaternary amides via a polar-radical crossover-enolate oxidation-aryl migration pathway. A variety of easily accessible N-alkyl and N-arylsulfonamides are reacted with disubstituted ketenes to give the corresponding amide enolates, which undergo upon single electron transfer oxidation, a 1,4-aryl migration, desulfonylation, hydrogen atom transfer cascade to provide α-quaternary amides in good to excellent yields. Various mono- and di-substituted heteroatom-containing and polycyclic arenes engage in the aryl migration reaction. Functional group tolerance is excellent and substrates as well as reagents are readily available rendering the method broadly applicable.

3.
Chem Sci ; 13(13): 3875-3879, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35432887

RESUMO

Herein we introduce a simple, efficient and transition-metal free method for the preparation of valuable and sterically hindered 3,3-disubstituted oxindoles via polar-radical crossover of ketene derived amide enolates. Various easily accessible N-alkyl and N-arylanilines are added to disubstituted ketenes and the resulting amide enolates undergo upon single electron transfer oxidation a homolytic aromatic substitution (HAS) to provide 3,3-disubstituted oxindoles in good to excellent yields. A variety of substituted anilines and a 3-amino pyridine engage in this oxidative formal [3 + 2] cycloaddition and cyclic ketenes provide spirooxindoles. Both substrates and reagents are readily available and tolerance to functional groups is broad.

4.
Angew Chem Int Ed Engl ; 60(7): 3561-3565, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215815

RESUMO

α-C-H arylation of N-alkylamides using 2-iodoarylsulfonyl radical translocating arylating (RTA) groups is reported. The method allows the construction of α-quaternary carbon centers in amides. Various mono- and disubstituted RTA-groups are applied to the arylation of primary, secondary, and tertiary α-C(sp3 )-H-bonds. These radical transformations proceed in good to excellent yields and the cascades comprise a 1,6-hydrogen atom transfer, followed by a 1,4-aryl migration with subsequent SO2 extrusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...