Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tuberculosis (Edinb) ; 136: 102248, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36055153

RESUMO

Rifampicin is one of the most important drugs for the treatment of tuberculosis (TB). Polymorphisms in SLCO1B1 and SLC10A1 genes are associated with impaired transporter function of drug compounds such as rifampicin. The relationship between genetic variation, clinical comorbidities, and rifampicin exposures in TB patients has not been completely elucidated. The aim of this study was to investigate the prevalence of SLCO1A1 and SLCO1B1 polymorphisms in TB and TB-DM patients and to determine their relationship with rifampicin pharmacokinetics on patients from México. Blood samples were collected in two hospitals in Baja California, Mexico from February through December 2017. Sampling included 19 patients with TB, 11 with T2DM and 17 healthy individuals. Polymorphisms genotype rs2306283, rs11045818, rs11045819, rs4149056, rs4149057, rs72559746,rs2291075 and rs4603354 of SLCO1B1 and rs4646285 and rs138880008 of SLC10A1 were analyzed by Sanger's sequencing. None of the SLCO1B1 and SLC10A1 variants were significantly associated with rifampicin Cmax. TB and T2DM patients with suboptimal Cmax rifampicin levels showed wild alleles in rs11045819 and rs2291075 in SLCO1B1 SLC10A1 and SLC10A1. This is the first study to analyze SLC10A1 and SLCO1B1 polymorphisms in TB and TB-T2DM patients and healthy individuals in Mexico. Further research to confirm and extend these findings is necessary.


Assuntos
Diabetes Mellitus Tipo 2 , Mycobacterium tuberculosis , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Tuberculose , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Genótipo , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , México/epidemiologia , Morbidade , Polimorfismo de Nucleotídeo Único , Rifampina , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico , Tuberculose/epidemiologia
2.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407184

RESUMO

The hemolytic activity assay is a versatile tool for fast primary toxicity studies. This work presents a systematic study of the hemolytic properties of ArgovitTM silver nanoparticles (AgNPs) extensively studied for biomedical applications. The results revealed an unusual and unexpected bell-shaped hemolysis curve for human healthy and diabetic donor erythrocytes. With the decrease of pH from 7.4 and 6.8 to 5.6, the hemolysis profiles for AgNPs and AgNO3 changed dramatically. For AgNPs, the bell shape changed to a step shape with a subsequent sharp increase, and for AgNO3 it changed to a gradual increase. Explanations of these changes based on the aggregation of AgNPs due to the increase of proton concentration were suggested. Hemolysis of diabetic donor erythrocytes was slightly higher than that of healthy donor erythrocytes. The meta-analysis revealed that for only one AgNPs formulation (out of 48), a bell-shaped hemolysis profile was reported, but not discussed. This scarcity of data was explained by the dominant goal of studies consisting in achieving clinically significant hemolysis of 5-10%. Considering that hemolysis profiles may be bell-shaped, it is recommended to avoid extrapolations and to perform measurements in a wide concentration interval in hemolysis assays.

3.
Nanomaterials (Basel) ; 11(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443926

RESUMO

Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application. The commercially available silver nanoparticle Argovit™ has shown antineoplastic, antiviral, antibacterial, and tissue regenerative properties, activities triggered by its capacity to promote the overproduction of reactive oxygen species (ROS). Therefore, in this work, we evaluated the genotoxic and cytotoxic potential of the Argovit™ formulation (average size: 35 nm) on BALB/c mice using the micronucleus in a peripheral blood erythrocytes model. Besides, we evaluated the capability of AgNPs to modulate the genotoxic effect induced by cyclophosphamide (CP) after the administration of the oncologic agent. To achieve this, 5-6-week-old male mice with a mean weight of 20.11 ± 2.38 g were treated with water as negative control (Group 1), an single intraperitoneal dose of CP (50 mg/kg of body weight, Group 2), a daily oral dose of AgNPs (6 mg/kg of weight, Group 3) for three consecutive days, or a combination of these treatment schemes: one day of CP doses (50 mg/kg of body weight) followed by three doses of AgNPs (one dose per day, Group 4) and three alternate doses of CP and AgNPs (six days of exposure, Group 5). Blood samples were taken just before the first administration (0 h) and every 24 h for seven days. Our results show that Argovit™ AgNPs induced no significant cytotoxic or acute genotoxic damage. The observed cumulative genotoxic damage in this model could be caused by the accumulation of AgNPs due to administered consecutive doses. Furthermore, the administration of AgNPs after 24 h of CP seems to have a protective effect on bone marrow and reduces by up to 50% the acute genotoxic damage induced by CP. However, this protection is not enough to counteract several doses of CP. To our knowledge, this is the first time that the exceptional chemoprotective capacity produced by a non-cytotoxic silver nanoparticle formulation against CP genotoxic damage has been reported. These findings raise the possibility of using AgNPs as an adjuvant agent with current treatments, reducing adverse effects.

4.
Diagnostics (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441257

RESUMO

The objective of this work is to perform image quality assessment (IQA) of eye fundus images in the context of digital fundoscopy with topological data analysis (TDA) and machine learning methods. Eye health remains inaccessible for a large amount of the global population. Digital tools that automize the eye exam could be used to address this issue. IQA is a fundamental step in digital fundoscopy for clinical applications; it is one of the first steps in the preprocessing stages of computer-aided diagnosis (CAD) systems using eye fundus images. Images from the EyePACS dataset were used, and quality labels from previous works in the literature were selected. Cubical complexes were used to represent the images; the grayscale version was, then, used to calculate a persistent homology on the simplex and represented with persistence diagrams. Then, 30 vectorized topological descriptors were calculated from each image and used as input to a classification algorithm. Six different algorithms were tested for this study (SVM, decision tree, k-NN, random forest, logistic regression (LoGit), MLP). LoGit was selected and used for the classification of all images, given the low computational cost it carries. Performance results on the validation subset showed a global accuracy of 0.932, precision of 0.912 for label "quality" and 0.952 for label "no quality", recall of 0.932 for label "quality" and 0.912 for label "no quality", AUC of 0.980, F1 score of 0.932, and a Matthews correlation coefficient of 0.864. This work offers evidence for the use of topological methods for the process of quality assessment of eye fundus images, where a relatively small vector of characteristics (30 in this case) can enclose enough information for an algorithm to yield classification results useful in the clinical settings of a digital fundoscopy pipeline for CAD.

5.
Materials (Basel) ; 14(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073953

RESUMO

The use of nanomaterials is becoming increasingly widespread, leading to substantial research focused on nanomedicine. Nevertheless, the lack of complete toxicity profiles limits nanomaterials' uses, despite their remarkable diagnostic and therapeutic results on in vitro and in vivo models. Silver nanoparticles (AgNPs), particularly Argovit™, have shown microbicidal, virucidal, and antitumoral effects. Among the first-line toxicity tests is the hemolysis assay. Here, the hemolytic effect of Argovit™ AgNPs on erythrocytes from one healthy donor (HDE) and one diabetic donor (DDE) is evaluated by the hemolysis assay against AgNO3. The results showed that Argovit™, in concentrations ≤24 µg/mL of metallic silver, did not show a hemolytic effect on the HDE or DDE. On the contrary, AgNO3 at the same concentration of silver ions produces more than 10% hemolysis in both the erythrocyte types. In all the experimental conditions assessed, the DDE was shown to be more prone to hemolysis than the HDE elicited by Ag+ ions or AgNPs, but much more evident with Ag+ ions. The results show that Argovit™ is the least hemolytic compared with the other twenty-two AgNP formulations previously reported, probably due to the polymer mass used to stabilize the Argovit™ formulation. The results obtained provide relevant information that contributes to obtaining a comprehensive toxicological profile to design safe and effective AgNP formulations.

6.
Nanomaterials (Basel) ; 10(7)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708646

RESUMO

Due to their antibacterial and antiviral effects, silver nanoparticles (AgNP) are one of the most widely used nanomaterials worldwide in various industries, e.g., in textiles, cosmetics and biomedical-related products. Unfortunately, the lack of complete physicochemical characterization and the variety of models used to evaluate its cytotoxic/genotoxic effect make comparison and decision-making regarding their safe use difficult. In this work, we present a systematic study of the cytotoxic and genotoxic activity of the commercially available AgNPs formulation Argovit™ in Allium cepa. The evaluated concentration range, 5-100 µg/mL of metallic silver content (85-1666 µg/mL of complete formulation), is 10-17 times higher than the used for other previously reported polyvinylpyrrolidone (PVP)-AgNP formulations and showed no cytotoxic or genotoxic damage in Allium cepa. Conversely, low concentrations (5 and 10 µg/mL) promote growth without damage to roots or bulbs. Until this work, all the formulations of PVP-AgNP evaluated in Allium cepa regardless of their size, concentration, or the exposure time had shown phytotoxicity. The biological response observed in Allium cepa exposed to Argovit™ is caused by nanoparticles and not by silver ions. The metal/coating agent ratio plays a fundamental role in this response and must be considered within the key physicochemical parameters for the design and manufacture of safer nanomaterials.

7.
ACS Omega ; 5(21): 12005-12015, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32548379

RESUMO

Silver nanoparticles (AgNPs) are the most used nanomaterials worldwide due to their excellent antibacterial, antiviral, and antitumor activities, among others. However, there is scarce information regarding their genotoxic potential measured using human peripheral blood lymphocytes. In this work, we present the cytotoxic and genotoxic behavior of two commercially available poly(vinylpyrrolidone)-coated silver nanoparticle (PVP-AgNPs) formulations that can be identified as noncytotoxic and nongenotoxic by just evaluating micronuclei (MNi) induction and the mitotic index, but present enormous differences when other parameters such as cytostasis, apoptosis, necrosis, and nuclear damage (nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs)) are analyzed. The results show that Argovit (35 nm PVP-AgNPs) and nanoComposix (50 nm PVP-AgNPs), at concentrations from 0.012 to 12 µg/mL, produce no changes in the nuclear division index (NDI) or micronuclei (MNi) frequency compared with the values found on control cultures of human blood peripheral lymphocytes from a healthy donor. Still, 50 nm PVP-AgNPs significantly decrease the replication index and significantly increase cytostasis, apoptosis, necrosis, and the frequencies of nuclear buds (NBUDs) and nucleoplasmic bridges (NPBs). These results provide evidence that the cytokinesis-block micronucleus (CBMN) assay using human lymphocytes and evaluating the eight parameters provided by the technique is a sensitive, fast, accurate, and inexpensive detection tool to support or discard AgNPs or other nanomaterials, which is worthwhile for continued testing of their effectiveness and toxicity for biomedical applications. In addition, it provides very important information about the role played by the [coating agent]/[metal] ratio in the design of nanomaterials that could reduce adverse effects as much as possible while retaining their therapeutic capabilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...