Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Beilstein J Org Chem ; 15: 2941-2947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921365

RESUMO

In our natural product screening program from marine fungi, two new aromatic polyketides karimunones A (1) and B (2) and five known compounds (3-7) were isolated from sponge-associated Fusarium sp. KJMT.FP.4.3 which was collected from an Indonesian sponge Xestospongia sp. The structures of these compounds were determined by the analysis of NMR and MS spectroscopic data. The NMR assignment of 1 was assisted by DFT-based theoretical chemical shift calculation. Compound 2 showed antibacterial activity against multidrug resistant Salmonella enterica ser. Typhi with a MIC of 125 µg/mL while 1 was not active.

2.
Sci Rep ; 7: 44230, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287181

RESUMO

α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (ß/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Amido/química , alfa-Amilases/química , Proteínas de Bactérias/metabolismo , Catálise , Amido/metabolismo , alfa-Amilases/metabolismo
3.
Bioorg Med Chem ; 19(22): 6658-74, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21835627

RESUMO

Coral reefs are among the most productive marine ecosystems and are the source of a large group of structurally unique biosynthetic products. Annual reviews of marine natural products continue to illustrate that the most prolific source of bioactive compounds consist of coral reef invertebrates-sponges, ascidians, mollusks, and bryozoans. This account examines recent milestone developments pertaining to compounds from invertebrates designated as therapeutic leads for biomedical discovery. The focus is on the secondary metabolites, their inspirational structural scaffolds and the possible role of micro-organism associants in their biosynthesis. Also important are the increasing concerns regarding the collection of reef invertebrates for the discovery process. The case examples considered here will be useful to insure that future research to unearth bioactive invertebrate-derived compounds will be carried out in a sustainable and environmentally conscious fashion. Our account begins with some observations pertaining to the natural history of these organisms. Many still believe that a serious obstacle to the ultimate development of a marine natural product isolated from coral reef invertebrates is the problem of compound supply. Recent achievements through total synthesis can now be drawn on to forcefully cast this myth aside. The tools of semisynthesis of complex natural products or insights from SAR efforts to simplify an active pharmacophore are at hand and demand discussion. Equally exciting is the prospect that invertebrate-associated micro-organisms may represent the next frontier to accelerate the development of high priority therapeutic candidates. Currently in the United States there are two FDA approved marine-derived therapeutic drugs and two others that are often cited as being marine-inspired. This record will be examined first followed by an analysis of a dozen of our favorite examples of coral reef invertebrate natural products having therapeutic potential. The record of using complex scaffolds of marine invertebrate products as the starting point for development will be reviewed by considering eight case examples. The potential promise of developing invertebrate-derived micro-organisms as the starting point for further exploration of therapeutically relevant structures is considered. Also significant is the circumstance that there are some 14 sponge-derived compounds that are available to facilitate fundamental biological investigations.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Invertebrados/química , Animais , Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Biotecnologia/métodos , Recifes de Corais , Humanos , Invertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA