Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 315: 137687, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587921

RESUMO

The arsenite-humic acid binding process was investigated using Isothermal Titration Calorimetry (ITC), Dynamic Light Scattering and Laser Doppler Electrophoresis techniques. The ITC data were successfully (R2 = 0.996-0.936) interpreted by applying the MNIS model, enabling thermodynamic parameters to be determined. The MNIS model was adjusted to the arsenite-HA binding process assuming that hydrogen bonding is the dominant type of interaction in the system. Negative enthalpy change values indicated the arsenite-HAs binding as an exothermic process. Negative ΔG values (-(26.83-27.00) kJ mol-1) pointed out to spontaneous binding reaction, leading to the formation of the arsenite-HA complexes. The binding constant values ((7.57-5.02) 105 M-1) clearly demonstrate pronounced binding affinity. As ΔS values are obviously positive but close to zero, and ΔH>ΔS, the reaction can be considered enthalpy driven. Reaction heats and ΔH values (-(18.96-15.64) kJ mol-1) confirmed hydrogen bonds as the most ascendant interaction type in the arsenite-HA complex. Negative zeta potential values (-45 to -20 mV) had shown that arsenite-HA aggregates remained negatively charged in the whole molar charge ratio range. The HAs' aggregate size change is evident but not particularly pronounced (Zav = 50-180 nm). It can be speculated that aggregation during the titration process is not expressive due to repulsive forces between negatively charged arsenite-HA particles. Thermodynamic and reaction parameters clearly indicated that arsenite-HA complexes are formed at common soil pH values, confirming the possible influence of humic acids on increased As mobility and its reduced bioavailability.


Assuntos
Arsenitos , Substâncias Húmicas , Difusão Dinâmica da Luz , Solo , Termodinâmica , Calorimetria
2.
Environ Sci Process Impacts ; 25(3): 542-553, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36688907

RESUMO

Kinetic studies are important for understanding the parameters and processes involved in the sorption of pesticides to soil. Considering the agricultural and environmental relevance of clomazone, its sorption kinetics was studied in four agricultural soils (Regosol, Planosol, Chernozem and Vertisol) at two concentrations (0.5 and 15 mg L-1). Different kinetic models were applied to the experimental data. The pseudo-second-order model described the data much better than the hyperbolic and pseudo-first-order models, and the kinetic rate constants indicated concentration-dependent clomazone sorption kinetics. The application of the two-site nonequilibrium model (TSNE) revealed a more time-dependent sorption of the lower clomazone concentration than that of the higher clomazone concentration, and the greatest concentration impact occurred in Regosol. Elovich and intraparticle diffusion models predicted more intensive sorption during the slower second phase and that sorption kinetics is governed more by mass transfer across the boundary layer than by a intraparticle diffusion process at higher clomazone concentration. Intraparticle diffusion is the rate-controlling process in Regosol at lower concentration, while this process and the boundary layer control the sorption kinetics in other soils. Significant correlations between some kinetic parameters and soil properties indicate an impact of the soil texture on the clomazone sorption mechanism, which must be considered in assessing the clomazone leaching behavior.


Assuntos
Herbicidas , Solo , Herbicidas/química , Cinética , Solo/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...