Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850865

RESUMO

Wideband spectrum sensing is a challenging problem in the framework of cognitive radio and spectrum surveillance, mainly because of the high sampling rates required by standard approaches. In this paper, a compressed sensing approach was considered to solve this problem, relying on a sub-Nyquist or Xsampling scheme, known as a modulated wideband converter. First, the data reduction at its output is performed in order to enable a highly effective processing scheme for spectrum reconstruction. The impact of this data transformation on the behavior of the most popular sparse reconstruction algorithms is then analyzed. A new mathematical approach is proposed to demonstrate that greedy reconstruction algorithms, such as Orthogonal Matching Pursuit, are invariant with respect to the proposed data reduction. Relying on the same formalism, a data reduction invariant version of the LASSO (least absolute shrinkage and selection operator) reconstruction algorithm was also introduced. It is finally demonstrated that the proposed algorithm provides good reconstruction results in a wideband spectrum sensing scenario, using both synthetic and measured data.

2.
Sensors (Basel) ; 22(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559976

RESUMO

Full-duplex (FD) communication systems allow for increased spectral efficiency but require effective self-interference cancellation (SIC) techniques to enable the proper reception of the signal of interest. The underlying idea of digital SIC is to estimate the self-interference (SI) channel based on the received signal and the known transmitted waveform. This is a challenging task since the SI channel involves, especially for mass-market FD transceivers, many nonlinear distortions produced by the impairments of the analog components from the receiving and transmitting chains. Hence, this paper first analyzes the power of the SI components under practical conditions and focuses on the most significant one, which is proven to be produced by the I/Q mixer imbalance. Then, a widely-linear digital SIC approach is adopted, which simultaneously deals with the direct SI and its image component caused by the I/Q imbalance. Finally, the performances achieved by linear and widely-linear SIC approaches are evaluated and compared using an experimental FD platform relying on software-defined radio technology and GNU Radio. Moreover, the considered experimental framework allows us to set different image rejection ratios for the transmission path I/Q mixer and to study its influence on the SIC capability of the discussed approaches.

3.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086724

RESUMO

In the last years, the commercial drone/unmanned aerial vehicles market has grown due to their technological performances (provided by the multiple onboard available sensors), low price, and ease of use. Being very attractive for an increasing number of applications, their presence represents a major issue for public or classified areas with a special status, because of the rising number of incidents. Our paper proposes a new approach for the drone movement detection and characterization based on the ultra-wide band (UWB) sensing system and advanced signal processing methods. This approach characterizes the movement of the drone using classical methods such as correlation, envelope detection, time-scale analysis, but also a new method, the recurrence plot analysis. The obtained results are compared in terms of movement map accuracy and required computation time in order to offer a future starting point for the drone intrusion detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...