Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 29(23): 2848-2862, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30256697

RESUMO

In yeast, protein kinase A (PKA) adjusts transcriptional profiles, metabolic rates, and cell growth in accord with carbon source availability. PKA affects gene expression mostly via the transcription factors Msn2 and Msn4, two key regulators of the environmental stress response. Here we analyze the role of the PKA-Msn2 signaling module using an Msn2 allele that harbors serine-to-alanine substitutions at six functionally important PKA motifs (Msn2A6) . Expression of Msn2A6 mimics low PKA activity, entails a transcription profile similar to that of respiring cells, and prevents formation of colonies on glucose-containing medium. Furthermore, Msn2A6 leads to high oxygen consumption and hence high respiratory activity. Substantially increased intracellular concentrations of several carbon metabolites, such as trehalose, point to a metabolic adjustment similar to diauxic shift. This partial metabolic switch is the likely cause for the slow-growth phenotype in the presence of glucose. Consistently, Msn2A6 expression does not interfere with growth on ethanol and tolerated is to a limited degree in deletion mutant strains with a gene expression signature corresponding to nonfermentative growth. We propose that the lethality observed in mutants with hampered PKA activity resides in metabolic reprogramming that is initiated by Msn2 hyperactivity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/fisiologia , Frequência do Gene , Glucose/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Elementos de Resposta , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Transdução de Sinais , Fatores de Transcrição/fisiologia , Transcrição Gênica
2.
Front Microbiol ; 4: 350, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324463

RESUMO

Weak organic acids such as sorbic acid are important food preservatives and powerful fungistatic agents. These compounds accumulate in the cytosol and disturb the cellular pH and energy homeostasis. Candida glabrata is in many aspects similar to Saccharomyces cerevisiae. However, with regard to confrontation to sorbic acid, two of the principal response pathways behave differently in C. glabrata. In yeast, sorbic acid stress causes activation of many genes via the transcription factors Msn2 and Msn4. The C. glabrata homologs CgMsn2 and CgMsn4 are apparently not activated by sorbic acid. In contrast, in C. glabrata the high osmolarity glycerol (HOG) pathway is activated by sorbic acid. Here we show that the MAP kinase of the HOG pathway, CgHog1, becomes phosphorylated and has a function for weak acid stress resistance. Transcript profiling of weak acid treated C. glabrata cells suggests a broad and very similar response pattern of cells lacking CgHog1 compared to wild type which is over lapping with but distinct from S. cerevisiae. The PDR12 gene was the highest induced gene in both species and it required CgHog1 for full expression. Our results support flexibility of the response cues for general stress signaling pathways, even between closely related yeasts, and functional extension of a specific response pathway.

3.
Nature ; 479(7373): 406-9, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22094701

RESUMO

Flying insects oscillate their wings at high frequencies of up to 1,000 Hz and produce large mechanical forces of 80 W per kilogram of muscle. They utilize a pair of perpendicularly oriented indirect flight muscles that contain fibrillar, stretch-activated myofibres. In contrast, all other, more slowly contracting, insect body muscles have a tubular muscle morphology. Here we identify the transcription factor Spalt major (Salm) as a master regulator of fibrillar flight muscle fate in Drosophila. salm is necessary and sufficient to induce fibrillar muscle fate. salm switches the entire transcriptional program from tubular to fibrillar fate by regulating the expression and splicing of key sarcomeric components specific to each muscle type. Spalt function is conserved in insects evolutionarily separated by 280 million years. We propose that Spalt proteins switch myofibres from tubular to fibrillar fate during development, a function potentially conserved in the vertebrate heart--a stretch-activated muscle sharing features with insect flight muscle.


Assuntos
Evolução Biológica , Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas de Homeodomínio/metabolismo , Músculos/anatomia & histologia , Músculos/fisiologia , Fatores de Transcrição/metabolismo , Processamento Alternativo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
4.
Nature ; 464(7286): 287-91, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20220848

RESUMO

Systematic genetic approaches have provided deep insight into the molecular and cellular mechanisms that operate in simple unicellular organisms. For multicellular organisms, however, the pleiotropy of gene function has largely restricted such approaches to the study of early embryogenesis. With the availability of genome-wide transgenic RNA interference (RNAi) libraries in Drosophila, it is now possible to perform a systematic genetic dissection of any cell or tissue type at any stage of the lifespan. Here we apply these methods to define the genetic basis for formation and function of the Drosophila muscle. We identify a role in muscle for 2,785 genes, many of which we assign to specific functions in the organization of muscles, myofibrils or sarcomeres. Many of these genes are phylogenetically conserved, including genes implicated in mammalian sarcomere organization and human muscle diseases.


Assuntos
Drosophila melanogaster/embriologia , Genes de Insetos/genética , Animais , Biologia Computacional , Estudo de Associação Genômica Ampla , Biblioteca Genômica , Larva , Masculino , Músculos/embriologia , Interferência de RNA
5.
Mol Cell ; 27(3): 353-66, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17679087

RESUMO

The Igf2r imprinted cluster is an epigenetic silencing model in which expression of a ncRNA silences multiple genes in cis. Here, we map a 250 kb region in mouse embryonic fibroblast cells to show that histone modifications associated with expressed and silent genes are mutually exclusive and localized to discrete regions. Expressed genes were modified at promoter regions by H3K4me3 + H3K4me2 + H3K9Ac and on putative regulatory elements flanking active promoters by H3K4me2 + H3K9Ac. Silent genes showed two types of nonoverlapping profile. One type spread over large domains of tissue-specific silent genes and contained H3K27me3 alone. A second type formed localized foci on silent imprinted gene promoters and a nonexpressed pseudogene and contained H3K9me3 + H4K20me3 +/- HP1. Thus, mammalian chromosome arms contain active chromatin interspersed with repressive chromatin resembling the type of heterochromatin previously considered a feature of centromeres, telomeres, and the inactive X chromosome.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica , Genoma , Impressão Genômica , Histonas/metabolismo , Animais , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Cromossomos , Embrião de Mamíferos , Fibroblastos/metabolismo , Inativação Gênica , Metilação , Camundongos , Mapeamento Físico do Cromossomo
6.
Bone ; 40(4): 867-75, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17189721

RESUMO

Bone resorbing osteoclasts are specialized macrophages that cannot differentiate in the absence of c-Fos, a member of the dimeric transcription factor AP-1 (activator protein-1). However, osteoclast differentiation in the absence of c-Fos can be rescued in vitro and in vivo by Fra1, a Fos-like protein and transcriptional target of c-Fos. To enable AP-1 proteins binding to DNA, c-Fos or Fra1 must heterodimerize with a partner such as c-Jun, JunB and JunD. In this study, we investigated the dimerization partners of c-Fos and Fra1 required for osteoclast differentiation using synthetic "single-chain" AP-1 dimers in which c-Fos or Fra1 is tethered via a linker to Jun proteins. When c-Fos was analyzed in combination with any Jun protein, including a c-Jun mutant lacking major phosphorylation sites for c-Jun amino-terminal kinase (JNK), osteoclasts were efficiently formed from c-Fos-deficient hematopoietic precursors. However, Fra1 in combination with any Jun protein could not rescue osteoclastogenesis. The ability to rescue was compared to transcriptional activity measured in transient transfection assays using promoters driven by consensus AP-1 sites or a composite AP-1/NFAT binding site. These data show that a single Jun/c-Fos dimer is sufficient for osteoclast differentiation, likely due to its transactivation ability for a broader range of promoters, in particular consensus AP-1 sites. We propose that Fra1 together with a dimerization partner different from Jun proteins can rescue osteoclast differentiation in c-Fos-deficient precursors.


Assuntos
Osteoclastos/citologia , Osteoclastos/metabolismo , Proteínas Proto-Oncogênicas c-fos/química , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Células Cultivadas , Dimerização , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/química , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Fosforilação , Proteínas Proto-Oncogênicas c-fos/deficiência , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/química , Fator de Transcrição AP-1/metabolismo
7.
EMBO J ; 24(4): 800-12, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15678104

RESUMO

Histone lysine methylation has been shown to index silenced chromatin regions at, for example, pericentric heterochromatin or of the inactive X chromosome. Here, we examined the distribution of repressive histone lysine methylation states over the entire family of DNA repeats in the mouse genome. Using chromatin immunoprecipitation in a cluster analysis representing repetitive elements, our data demonstrate the selective enrichment of distinct H3-K9, H3-K27 and H4-K20 methylation marks across tandem repeats (e.g. major and minor satellites), DNA transposons, retrotransposons, long interspersed nucleotide elements and short interspersed nucleotide elements. Tandem repeats, but not the other repetitive elements, give rise to double-stranded (ds) RNAs that are further elevated in embryonic stem (ES) cells lacking the H3-K9-specific Suv39h histone methyltransferases. Importantly, although H3-K9 tri- and H4-K20 trimethylation appear stable at the satellite repeats, many of the other repeat-associated repressive marks vary in chromatin of differentiated ES cells or of embryonic trophoblasts and fibroblasts. Our data define a profile of repressive histone lysine methylation states for the repetitive complement of four distinct mouse epigenomes and suggest tandem repeats and dsRNA as primary triggers for more stable chromatin imprints.


Assuntos
DNA Satélite/metabolismo , Epigênese Genética/genética , Genoma , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Sequências de Repetição em Tandem/genética , Animais , Células Cultivadas , Análise por Conglomerados , Metilação de DNA , Elementos de DNA Transponíveis/genética , DNA Satélite/genética , Inativação Gênica , Camundongos , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/genética
8.
Oncogene ; 23(27): 4707-21, 2004 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15122341

RESUMO

Polyomavirus (Py) large and small tumorantigens together are competent to induce S phase in growth-arrested mouse fibroblasts. The capacity of the large tumorantigen to bind the pocket proteins, pRB, p130 and p107, is important for the transactivation of DNA synthesis enzymes and the cyclins E and A, while the interference of small tumorantigen with protein phosphatase PP2A causes a destabilization of the cdk2 inhibitor p27, and thus leads to strong cyclin E- and cyclin A-dependent cdk2 activity. Py small tumorantigen, in addition, is able to transactivate cyclin A. Hence, this protein might have a much wider effect on gene expression in arrested mouse fibroblasts than hitherto suspected. This may have a profound part in the known capacity of Py to form tumors in mice. Therefore, it was interesting to gain an insight into the spectrum of transcriptional deregulation by Py tumorantigens. Accordingly, we performed microarray analysis of quiescent mouse fibroblasts in the absence and presence of small or large tumorantigen. We found that the viral proteins can induce or repress a great variety of genes beyond those involved in the S phase induction and DNA synthesis. The results of the microarray analysis were confirmed for selected genes by several methods, including real-time PCR. Interestingly, a mutation of the binding site for pocket proteins in case of LT and for PP2A in case of ST has a variable effect on the deregulation of genes by the viral proteins depending on the gene in question. In fact, some genes are transactivated by LT as well as ST completely independent of an interaction with their major cellular targets, pocket proteins and PP2A, respectively.


Assuntos
Antígenos Transformantes de Poliomavirus/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Polyomavirus/metabolismo , Células 3T3 , Animais , Antígenos Transformantes de Poliomavirus/genética , Western Blotting , Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina D1/metabolismo , Decorina , Proteínas da Matriz Extracelular , Fibroblastos/citologia , Camundongos , Componente 6 do Complexo de Manutenção de Minicromossomo , Miosinas/metabolismo , Neurofibromatose 2/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Polyomavirus/imunologia , Proteoglicanas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Supressoras de Tumor/antagonistas & inibidores
9.
Nucleic Acids Res ; 31(23): 7011-23, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14627834

RESUMO

Transactivation/transformation-domain associated protein (TRRAP) is a component of several multi-protein HAT complexes implicated in both transcriptional regulation and DNA repair. We recently identified Trrap, the murine ortholog of TRRAP, as an essential protein implicated in mitotic progression control, although its target genes are not known. In the present study, we analyzed the expression profiles of Trrap-responsive genes, using cDNA microarray in mitotic cells. From a panel of 17 664 transcript elements, we found that loss of Trrap leads to expression alteration of a large fraction of genes at mitotic stage. Functional classification of these genes indicates that Trrap influences a variety of cellular processes including cell cycle progression, cytoskeleton and cell adhesion, protein turnover, metabolism and signal transduction. The majority (71%) of differentially expressed genes was down-regulated in Trrap- deficient cells, whereas the rest were up-regulated, suggesting that Trrap may also play a role in transcriptional silencing. ChIP analysis revealed that Trrap might regulate gene expression by participating in acetylation of histone H4 and/or H3 depending on target genes and cell cycle stage. Our study indicates that Trrap regulates the expression of a wide range of genes in both quiescence and mitotic stages. Removal of the Trrap protein is associated with both increased and decreased gene expression.


Assuntos
Ciclo Celular/genética , Deleção de Genes , Regulação da Expressão Gênica , Proteínas Nucleares/deficiência , Proteínas Nucleares/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal , Animais , Cromatina/genética , Cromatina/metabolismo , Fibroblastos , Perfilação da Expressão Gênica , Genômica , Histonas/metabolismo , Camundongos , Camundongos Knockout , Mitose/genética , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...