Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(1-1): 014208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797907

RESUMO

In finite-dimensional, chaotic, Lorenz-like wave-particle dynamical systems one can find diffusive trajectories, which share their appearance with that of laminar chaotic diffusion [Phys. Rev. Lett. 128, 074101 (2022)0031-900710.1103/PhysRevLett.128.074101] known from delay systems with lag-time modulation. Applying, however, to such systems a test for laminar chaos, as proposed in [Phys. Rev. E 101, 032213 (2020)2470-004510.1103/PhysRevE.101.032213], these signals fail such a test, thus leading to the notion of pseudolaminar chaos. The latter can be interpreted as integrated periodically driven on-off intermittency. We demonstrate that, on a signal level, true laminar and pseudolaminar chaos are hardly distinguishable in systems with and without dynamical noise. However, very pronounced differences become apparent when correlations of signals and increments are considered. We compare and contrast these properties of pseudolaminar chaos with true laminar chaos.

2.
Phys Rev E ; 107(1-1): 014205, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797923

RESUMO

A type of chaos called laminar chaos was found in singularly perturbed dynamical systems with periodic time-varying delay [Phys. Rev. Lett. 120, 084102 (2018)]0031-900710.1103/PhysRevLett.120.084102. It is characterized by nearly constant laminar phases, which are periodically interrupted by irregular bursts, where the intensity levels of the laminar phases vary chaotically from phase to phase. In this paper, we demonstrate that laminar chaos can also be observed in systems with quasiperiodic delay, where we generalize the concept of conservative and dissipative delays to such systems. It turns out that the durations of the laminar phases vary quasiperiodically and follow the dynamics of a torus map in contrast to the periodic variation observed for periodic delay. Theoretical and numerical results indicate that introducing a quasiperiodic delay modulation into a time-delay system can lead to a giant reduction of the dimension of the chaotic attractors. By varying the mean delay and keeping other parameters fixed, we found that the Kaplan-Yorke dimension is modulated quasiperiodically over several orders of magnitudes, where the dynamics switches quasiperiodically between different types of high- and low-dimensional types of chaos.

3.
Phys Rev E ; 106(1): L012202, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974539

RESUMO

We show that introducing quenched disorder into a circle map leads to the suppression of quasiperiodic behavior in the limit of large system sizes. Specifically, for most parameters the fraction of disorder realizations showing quasiperiodicity decreases with the system size and eventually vanishes in the limit of infinite size, where almost all realizations show mode locking. Consequently, in this limit, and in strong contrast to standard circle maps, almost the whole parameter space corresponding to invertible dynamics consists of Arnold tongues.

4.
Phys Rev E ; 105(6-1): 064212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854584

RESUMO

We show that the occurrence of chaotic diffusion in a typical class of time-delayed systems with linear instantaneous and nonlinear delayed term can be well described by an antipersistent random walk. We numerically investigate the dependence of all relevant quantities characterizing the random walk on the strength of the nonlinearity and on the delay. With the help of analytical considerations, we show that for a decreasing nonlinearity parameter the resulting dependence of the diffusion coefficient is well described by Markov processes of increasing order.

5.
Phys Rev E ; 105(6-1): 064126, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854593

RESUMO

We compare ergodic properties of the kinetic energy for three stochastic models of subrecoil-laser-cooled gases. One model is based on a heterogeneous random walk (HRW), another is an HRW with long-range jumps (the exponential model), and the other is a mean-field-like approximation of the exponential model (the deterministic model). All the models show an accumulation of the momentum at zero in the long-time limit, and a formal steady state cannot be normalized, i.e., there exists an infinite invariant density. We obtain the exact form of the infinite invariant density and the scaling function for the exponential and deterministic models, and we devise a useful approximation for the momentum distribution in the HRW model. While the models are kinetically nonidentical, it is natural to wonder whether their ergodic properties share common traits, given that they are all described by an infinite invariant density. We show that the answer to this question depends on the type of observable under study. If the observable is integrable, the ergodic properties, such as the statistical behavior of the time averages, are universal as they are described by the Darling-Kac theorem. In contrast, for nonintegrable observables, the models in general exhibit nonidentical statistical laws. This implies that focusing on nonintegrable observables, we discover nonuniversal features of the cooling process, which hopefully can lead to a better understanding of the particular model most suitable for a statistical description of the process. This result is expected to hold true for many other systems, beyond laser cooling.

6.
Phys Rev Lett ; 128(7): 074101, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244432

RESUMO

We consider a typical class of systems with delayed nonlinearity, which we show to exhibit chaotic diffusion. It is demonstrated that a periodic modulation of the time lag can lead to an enhancement of the diffusion constant by several orders of magnitude. This effect is the largest if the circle map defined by the modulation shows mode locking and, more specifically, fulfills the conditions for laminar chaos. Thus, we establish for the first time a connection between Arnold tongue structures in parameter space and diffusive properties of a system. Counterintuitively, the enhancement of diffusion is accompanied by a strong reduction of the effective dimensionality of the system.

7.
Phys Rev E ; 105(1-1): 014113, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35193310

RESUMO

We investigate the nonergodicity of the generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)PRLTAO0031-900710.1103/PhysRevLett.58.1100] with respect to the squared displacements. We present detailed analytical derivations of our previous findings outlined in a recent letter [Phys. Rev. Lett. 120, 104501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.104501], give detailed interpretations, and in particular emphasize three surprising results. First, we find that the mean-squared displacements can diverge for a certain range of parameter values. Second, we show that an ensemble of trajectories can spread subdiffusively, whereas individual time-averaged squared displacements show superdiffusion. Third, we recognize that the fluctuations of the time-averaged squared displacements can become so large that the ergodicity breaking parameter diverges, what we call infinitely strong ergodicity breaking. This phenomenon can also occur for paramter values where the lag-time dependence of the mean-squared displacements is linear indicating normal diffusion. In order to numerically determine the full distribution of time-averaged squared displacements, we use importance sampling. For an embedding of our findings into existing results in the literature, we define a more general model which we call variable speed generalized Lévy walk and which includes well-known models from the literature as special cases such as the space-time coupled Lévy flight or the anomalous Drude model. We discuss and interpret our findings regarding the generalized Lévy walk in detail and compare them with the nonergodicity of the other space-time coupled models following from the more general model.

8.
J Chem Phys ; 156(4): 044118, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35105107

RESUMO

The velocity distribution of a classical gas of atoms in thermal equilibrium is the normal Maxwell distribution. It is well known that for sub-recoiled laser cooled atoms, Lévy statistics and deviations from usual ergodic behavior come into play. In a recent letter, we showed how tools from infinite ergodic theory describe the cool gas. Here, using the master equation, we derive the scaling function and the infinite invariant density of a stochastic model for the momentum of laser cooled atoms, recapitulating results obtained by Bertin and Bardou [Am. J. Phys. 76, 630 (2008)] using life-time statistics. We focus on the case where the laser trapping is strong, namely, the rate of escape from the velocity trap is R(v) ∝ |v|α for v → 0 and α > 1. We construct a machinery to investigate time averages of physical observables and their relation to ensemble averages. The time averages are given in terms of functionals of the individual stochastic paths, and here we use a generalization of Lévy walks to investigate the ergodic properties of the system. Exploring the energy of the system, we show that when α = 3, it exhibits a transition between phases where it is either an integrable or a non-integrable observable with respect to the infinite invariant measure. This transition corresponds to very different properties of the mean energy and to a discontinuous behavior of fluctuations. While the integrable phase is described by universal statistics and the Darling-Kac law, the more challenging case is the exploration of statistical properties of non-integrable observables. Since previous experimental work showed that both α = 2 and α = 4 are attainable, we believe that both phases could also be explored experimentally.

9.
Phys Rev E ; 104(5-1): 054212, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942718

RESUMO

In general we are interested in dynamical systems coupled to complex hysteresis. Therefore as a first step we investigated recently the dynamics of a periodically driven damped harmonic oscillator coupled to independent Ising spins in a random field. Although such a system does not produce hysteresis, we showed how to characterize the dynamics of such a piecewise-smooth system, especially in the case of a large number of spins [Zech, Otto, and Radons, Phys. Rev. E 101, 042217 (2020)2470-004510.1103/PhysRevE.101.042217]. In this paper we extend our model to spin dimers, thus pairwise interacting spins. We show in which cases two interacting spins can show elementary hysteresis, and we give a connection to the Preisach model, which allows us to consider an infinite number of spin pairs. This thermodynamic limit leads us to a dynamical system with an additional hysteretic force in the form of a generalized play operator. By using methods from general chaos theory, piecewise-smooth system theory, and statistics we investigate the chaotic behavior of the dynamical system for a few spins and also in the case of a larger number of spins by calculating bifurcation diagrams, Lyapunov exponents, fractal dimensions, and self-averaging properties. We find that the fractal dimensions and the magnetization are in general not self-averaging quantities. We show how the dynamical properties of the piecewise-smooth system for a large number of spins differs from the system in its thermodynamic limit.

10.
Phys Rev Lett ; 127(14): 140605, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652191

RESUMO

With subrecoil-laser-cooled atoms, one may reach nanokelvin temperatures while the ergodic properties of these systems do not follow usual statistical laws. Instead, due to an ingenious trapping mechanism in momentum space, power-law-distributed sojourn times are found for the cooled particles. Here, we show how this gives rise to a statistical-mechanical framework based on infinite ergodic theory, which replaces ordinary ergodic statistical physics of a thermal gas of atoms. In particular, the energy of the system exhibits a sharp discontinuous transition in its ergodic properties. Physically, this is controlled by the fluorescence rate, but, more profoundly, it is a manifestation of a transition for any observable, from being an integrable to becoming a nonintegrable observable, with respect to the infinite (non-normalized) invariant density.

11.
Chaos ; 30(7): 073134, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32752625

RESUMO

The propagation of light pulses in dual-core nonlinear optical fibers is studied using a model proposed by Sakaguchi and Malomed. The system consists of a supercritical complex Ginzburg-Landau equation coupled to a linear equation. Our analysis includes single standing and walking solitons as well as walking trains of 3, 5, 6, and 12 solitons. For the characterization of the different scenarios, we used ensemble-averaged square displacement of the soliton trajectories and time-averaged power spectrum of the background waves. Power law spectra, indicative of turbulence, were found to be associated with random walks. The number of solitons (or their separations) can trigger anomalous random walks or totally suppress the background waves.

12.
Phys Rev E ; 101(5-1): 052112, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575214

RESUMO

We report on a fundamental role of a non-normalized formal steady state, i.e., an infinite invariant density, in a semi-Markov process where the state is determined by the interevent time of successive renewals. The state describes certain observables found in models of anomalous diffusion, e.g., the velocity in the generalized Lévy walk model and the energy of a particle in the trap model. In our model, the interevent-time distribution follows a fat-tailed distribution, which makes the state value more likely to be zero because long interevent times imply small state values. We find two scaling laws describing the density for the state value, which accumulates in the vicinity of zero in the long-time limit. These laws provide universal behaviors in the accumulation process and give the exact expression of the infinite invariant density. Moreover, we provide two distributional limit theorems for time-averaged observables in these nonstationary processes. We show that the infinite invariant density plays an important role in determining the distribution of time averages.

13.
Phys Rev E ; 101(4-1): 042217, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32422826

RESUMO

We aim at an understanding of the dynamical properties of a periodically driven damped harmonic oscillator coupled to a Random Field Ising Model (RFIM) at zero temperature, which is capable of showing complex hysteresis. The system is a combination of a continuous (harmonic oscillator) and a discrete (RFIM) subsystem, which classifies it as a hybrid system. In this paper we focus on the hybrid nature of the system and consider only independent spins in quenched random local fields, which can already lead to complex dynamics such as chaos and multistability. We study the dynamic behavior of this system by using the theory of piecewise-smooth dynamical systems and discontinuity mappings. Specifically, we present bifurcation diagrams and Lyapunov exponents as well as results for the shape and the dimensions of the attractors and the self-averaging behavior of the attractor dimensions and the magnetization. Furthermore we investigate the dynamical behavior of the system for an increasing number of spins and the transition to the thermodynamic limit, where the system behaves like a driven harmonic oscillator with an additional nonlinear smooth external force.

14.
Phys Rev E ; 101(3-1): 032213, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32289959

RESUMO

Recently, it was shown that certain systems with large time-varying delay exhibit different types of chaos, which are related to two types of time-varying delay: conservative and dissipative delays. The known high-dimensional turbulent chaos is characterized by strong fluctuations. In contrast, the recently discovered low-dimensional laminar chaos is characterized by nearly constant laminar phases with periodic durations and a chaotic variation of the intensity from phase to phase. In this paper we extend our results from our preceding publication [Hart, Roy, Müller-Bender, Otto, and Radons, Phys. Rev. Lett. 123, 154101 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.154101], where it is demonstrated that laminar chaos is a robust phenomenon, which can be observed in experimental systems. We provide a time series analysis toolbox for the detection of robust features of laminar chaos. We benchmark our toolbox by experimental time series and time series of a model system which is described by a nonlinear Langevin equation with time-varying delay. The benchmark is done for different noise strengths for both the experimental system and the model system, where laminar chaos can be detected, even if it is hard to distinguish from turbulent chaos by a visual analysis of the trajectory.

15.
Phys Rev Lett ; 123(15): 154101, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31702295

RESUMO

A new type of dynamics called laminar chaos was recently discovered through a theoretical analysis of a scalar delay differential equation with time-varying delay. Laminar chaos is a low-dimensional dynamics characterized by laminar phases of nearly constant intensity with periodic durations and a chaotic variation of the intensity from one laminar phase to the next laminar phase. This is in stark contrast to the typically observed higher-dimensional turbulent chaos, which is characterized by strong fluctuations. In this Letter we provide the first experimental observation of laminar chaos by studying an optoelectronic feedback loop with time-varying delay. The noise inherent in the experiment requires the development of a nonlinear Langevin equation with variable delay. The results show that laminar chaos can be observed in higher-order systems, and that the phenomenon is robust to noise and a digital implementation of the variable time delay.

16.
Chaos ; 28(7): 075505, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30070531

RESUMO

Solitons, which describe the propagation of concentrated beams of light through nonlinear media, can exhibit a variety of behaviors as a result of the intrinsic dissipation, diffraction, and the nonlinear effects. One of these phenomena, modeled by the complex Ginzburg-Landau equation, is chaotic explosions, transient enlargements of the soliton that may induce random transversal displacements, which in the long run lead to a random walk of the soliton center. As we show in this work, the transition from nonmoving to moving solitons is not a simple bifurcation but includes a sequence of normal and anomalous random walks. We analyze their statistics with the distribution of generalized diffusivities, a novel approach that has been used successfully for characterizing anomalous diffusion.

17.
Phys Rev Lett ; 120(10): 104501, 2018 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-29570320

RESUMO

We provide analytical results for the ensemble-averaged and time-averaged squared displacement, and the randomness of the latter, in the full two-dimensional parameter space of the d-dimensional generalized Lévy walk introduced by Shlesinger et al. [Phys. Rev. Lett. 58, 1100 (1987)PRLTAO0031-900710.1103/PhysRevLett.58.1100]. In certain regions of the parameter plane, we obtain surprising results such as the divergence of the mean-squared displacements, the divergence of the ergodicity breaking parameter despite a finite mean-squared displacement, and subdiffusion which appears superdiffusive when one only considers time averages.

18.
Phys Rev Lett ; 120(8): 084102, 2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29543029

RESUMO

We show that the output of systems with time-varying delay can exhibit a new kind of chaotic behavior characterized by laminar phases, which are periodically interrupted by irregular bursts. Within each laminar phase the output intensity remains almost constant, but its level varies chaotically from phase to phase. In scalar systems, the periodic dynamics of the lengths and the chaotic dynamics of the intensity levels can be understood and also tuned via two one-dimensional maps, which can be deduced from the nonlinearity of the delay equation and from the delay variation, respectively.

19.
Phys Rev E ; 97(1-1): 012311, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448336

RESUMO

Synchronization in networks of identical oscillators with heterogeneous coupling delays is studied. A decomposition of the network dynamics is obtained by block diagonalizing a newly introduced adjacency lag operator which contains the topology of the network as well as the corresponding coupling delays. This generalizes the master stability function approach, which was developed for homogenous delays. As a result the network dynamics can be analyzed by delay differential equations with distributed delay, where different delay distributions emerge for different network modes. Frequency domain methods are used for the stability analysis of synchronized equilibria and synchronized periodic orbits. As an example, the synchronization behavior in a system of delay-coupled Hodgkin-Huxley neurons is investigated. It is shown that the parameter regions where synchronized periodic spiking is unstable expand when increasing the delay heterogeneity.

20.
Phys Rev E ; 96(2-1): 022117, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950525

RESUMO

We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1/f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA