Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38674613

RESUMO

Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.

2.
Plants (Basel) ; 13(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498518

RESUMO

Apple production holds a prominent position in Morocco's Rosaceae family. However, annual production can fluctuate due to substantial losses caused by fungal diseases affecting stored apples. Our findings emphasize that the pre-storage treatment of apples, disinfection of storage facilities, box type, and fruit sorting are pivotal factors affecting apple losses during storage. Additionally, the adopted preservation technique was significantly correlated with the percentage of damage caused by fungal infections. Blue mold accounts for nearly three-quarters of the diseases detected, followed by gray rot with a relatively significant incidence. This study has revealed several fungal diseases affecting stored apples caused by pathogens such as Penicillium expansum, Botrytis cinerea, Alternaria alternata, Trichothecium roseum, Fusarium avenaceum, Cadophora malorum, and Neofabraea vagabunda. Notably, these last two fungal species have been reported for the first time in Morocco as pathogens of stored apples. These data affirm that the high losses of apples in Morocco, attributed primarily to P. expansum and B. cinerea, pose a significant threat in terms of reduced production and diminished fruit quality. Hence, adopting controlled atmosphere storage chambers and implementing good practices before apple storage is crucial.

3.
Molecules ; 28(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513251

RESUMO

The present study is based on a multidisciplinary approach carried out for the first time on Anacyclus pyrethrum var. pyrethrum and Anacyclus pyrethrum var. depressus, two varieties from the endemic and endangered medicinal species listed in the IUCN red list, Anacyclus pyrethrum (L.) Link. Therefore, morphological, phytochemical, and genetic characterisations were carried out in the present work. Morphological characterisation was established based on 23 qualitative and quantitative characters describing the vegetative and floral parts. The phytochemical compounds were determined by UHPLC. Genetic characterisation of extracted DNA was subjected to PCR using two sets of universal primers, rbcL a-f/rbcL a-R and rpocL1-2/rpocL1-4, followed by sequencing analysis using the Sanger method. The results revealed a significant difference between the two varieties studied. Furthermore, phytochemical analysis of the studied extracts revealed a quantitative and qualitative variation in the chemical profile, as well as the presence of interesting compounds, including new compounds that have never been reported in A. pyrethrum. The phylogenetic analysis of the DNA sequences indicated a similarity percentage of 91%. Based on the morphological characterisation and congruence with the phytochemical characterisation and molecular data, we can confirm that A. pyrethrum var. pyrethrum and A. pyrethrum var. depressus represent two different taxa.


Assuntos
Asteraceae , Chrysanthemum cinerariifolium , Chrysanthemum cinerariifolium/genética , Filogenia , Extratos Vegetais/química , Asteraceae/química , Compostos Fitoquímicos
4.
Plants (Basel) ; 11(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36015470

RESUMO

A decline of various grapevines (Vitis vinifera L.) in the province of Doukkala in Morocco was observed in 2021. The causal pathogen was identified as Lasiodiplodia viticola based on morphological characteristics and phylogenetic analysis of the internal transcribed region (ITS), the ß-tubulin gene (TUB) and calmodulin (cmdA). Koch's postulates were confirmed by successful re-isolation of L. viticola from plants inoculated with the pathogen under controlled conditions. The disease was shown to be prevalent in Bni Hilal (71.43%), Laamria (60%), and Boulaouane (40%) districts, but was quasi-absent in Lmechrek. To understand the dominance of L. viticola as one of the grapevine trunk pathogens, effects of temperature (10-40 °C) and pH (pH 3-pH 12) on growth and sporulation were investigated. The species were able to grow in a range of temperatures ranging from 15 to 40°C and showed a higher growth rate at 35 °C. The fungus were also characterized by a broad optimum pH ranging between 3-12. This study is the first report dealing with L. viticola associated with grapevine trunk diseases in Morocco. Additional studies are therefore required to understand the high occurrence of this disease in vineyards, which is likely due to climate changes. A good understanding of this complex disease might help to develop a reliable and sustainable preventive control strategy.

5.
Mar Pollut Bull ; 180: 113824, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35689939

RESUMO

Marine and estuarine environments are often affected by microbiological contamination that adversely affects their use and severely impacts human health. To examine the influence of anthropogenic activities, this study used two different ecosystems in Agadir Bay, to compare fecal indicator bacteria (FIB) and bacterial pathogen profiles over two years. Vibrio target pathogens were detected at a high frequency (49.3%), while a low percentage (5.5%) was noted for Salmonella. Apart from those mentioned above, several other pathogenic bacteria were detected such as Cronobacter sakzakii, Pseudomonas fluorescens, and Aeromonas hydrophila. We also investigated the antimicrobial resistance of the pathogenic bacteria isolated. Salmonella strains were sensitive to all the antibiotics used, except ampicillin, amoxicillin + Ac clavulanic and chloramphenicol. And Vibrio strains were resistant to ampicillin, cephalothin, amikacin, and ciprofloxacin. This study highlights the limitations of FIB in assessing the microbiological quality and the importance of environmental surveys in understanding the distribution of pathogens.


Assuntos
Ecossistema , Vibrio , Ampicilina , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Humanos , Salmonella
6.
J Fungi (Basel) ; 8(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736078

RESUMO

Grapevine trunk diseases (GTD) are currently one of the most devastating and challenging diseases in viticulture, leading to considerable yield losses and a remarkable decline in grapevine quality. The identification of the causal agents is the cornerstone of an efficient approach to fighting against fungal diseases in a sustainable, non-chemical manner. This review attempts to describe and expose the symptoms of each pathology related to GTD, the modes of transmission, and the harmfulness of recently reported agents. Special attention was given to new diagnostic tests and technologies, grapevine defense mechanisms, molecular mechanisms of endophytes fungal colonization, and management strategies used to control these threats. The present extended review is, therefore, an updated state-of-the-art report on the progress in the management of vineyards.

7.
Microorganisms ; 10(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336171

RESUMO

The increase in the world population has generated an important need for both quality and quantity agricultural products, which has led to a significant surge in the use of chemical pesticides to fight crop diseases. Consumers, however, have become very concerned in recent years over the side effects of chemical fungicides on human health and the environment. As a result, research into alternative solutions to protect crops has been imposed and attracted wide attention from researchers worldwide. Among these alternatives, biological controls through beneficial microorganisms have gained considerable importance, whilst several biological control agents (BCAs) have been screened, among them Bacillus, Pantoea, Streptomyces, Trichoderma, Clonostachys, Pseudomonas, Burkholderia, and certain yeasts. At present, biopesticide products have been developed and marketed either to fight leaf diseases, root diseases, or fruit storage diseases. However, no positive correlation has been observed between the number of screened BCAs and available marketed products. Therefore, this review emphasizes the development of biofungicides products from screening to marketing and the problems that hinder their development. Finally, particular attention was given to the gaps observed in this sector and factors that hamper its development, particularly in terms of efficacy and legislation procedures.

8.
Heliyon ; 7(10): e08142, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693062

RESUMO

Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations.

9.
Microorganisms ; 9(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576811

RESUMO

An extensive survey conducted in the Saïss plain of Morocco during the 2017-2018 growing season revealed that 35 out of 50 apple and pear orchards were infested with a pathogen that causes the decline disease. Morphological and phylogenetic tree analyses using the cox II gene allowed us to identify the pathogen as Phytopythium vexans. Interestingly, no Phytophthora and Pythium species were isolated. The occurrence and prevalence of the disease varied between locations; the most infested locations were Meknes (100%), Imouzzer (83%), and Sefrou (80%). To fulfill Koch's postulate, a greenhouse pathogenicity test was performed on the stem and collar of one-year-old healthy seedlings of apple rootstock M115. Symptoms similar to those observed in the field were reproduced in less than 4 months post-inoculation with root rot disease severity ranging from 70 to 100%. The survey results evidenced that apple rootstocks, soil type, and irrigation procedure may contribute significantly to the occurrence of the disease. The disease was most prevalent in drip water irrigation and sandy-clay soil on wild apple rootstock. Accordingly, a rational drip advanced watering system and good sanitation practices could eliminate water stagnation and help prevent the onset of this disease. It was concluded that Pp. vexans occurrence may be strongly influenced by irrigation mode and type of soil. Therefore, the obtained findings of this study could help to better understand the recurrence of this disease and to develop a reliable integrated strategy for its management.

10.
Nutrients ; 13(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34444919

RESUMO

Flaxseed is an oilseed (45-50% oil on a dry-weight basis) crop. Its oil has demonstrated multiple health benefits and industrial applications. The goal of this research was to evaluate the antidiabetic and anti-inflammatory potential of the free polyphenol fraction of flax (Linum usitatissimum L.) seeds (PLU), based on their use in traditional medicine. Mice with alloxan-induced diabetes were used to study the antidiabetic activity of PLU in vivo, with an oral administration of 25 and 50 mg/kg over 28 days. Measurements of body weight and fasting blood glucose (FBG) were carried out weekly, and biochemical parameters were evaluated. An oral glucose tolerance test was also performed. Inhibitory activities of PLU on α-amylase and α-glucosidase activities were evaluated in vitro. The anti-inflammatory was evaluated in vivo in Wistar rats using the paw edema induction Test by carrageenan, and in vitro using the hemolysis ratio test. PLU administration to diabetic mice during the study period improved their body weight and FBG levels remarkably. In vitro inhibitory activity of digestive enzymes indicated that they may be involved in the proposed mode of action of PLU extract. Qualitative results of PLU revealed the presence of 18 polyphenols. These findings support daily consumption of flaxseed for people with diabetes, and suggest that polyphenols in flaxseed may serve as dietary supplements or novel phytomedicines to treat diabetes and its complications.


Assuntos
Anti-Inflamatórios/farmacologia , Diabetes Mellitus Experimental/terapia , Linho/química , Hipoglicemiantes/farmacologia , Óleos de Plantas/farmacologia , Sementes/química , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Suplementos Nutricionais , Humanos , Camundongos , Polifenóis/farmacologia , Ratos , Ratos Wistar
11.
Plants (Basel) ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926049

RESUMO

Citrus trees face threats from several diseases that affect its production, in particular dry root rot (DRR). DRR is a multifactorial disease mainly attributed to Neocosmospora (Fusarium) solani and other several species of Neocosmospora and Fusarium spp. Nowadays, biological control holds a promising control strategy that showed its great potential as a reliable eco-friendly method for managing DRR disease. In the present study, antagonist rhizobacteria isolates were screened based on in vitro dual culture bioassay with N. solani. Out of 210 bacterial isolates collected from citrus rhizosphere, twenty isolates were selected and identified to the species level based on the 16S rRNA gene. Molecular identification based on 16S rRNA gene revealed nine species belonging to Bacillus, Stenotrophomonas, and Sphingobacterium genus. In addition, their possible mechanisms involved in biocontrol and plant growth promoting traits were also investigated. Results showed that pectinase, cellulose, and chitinase were produced by eighteen, sixteen, and eight bacterial isolates, respectively. All twenty isolates were able to produce amylase and protease, only four isolates produced hydrogen cyanide, fourteen isolates have solubilized tricalcium phosphate, and ten had the ability to produce indole-3-acetic acid (IAA). Surprisingly, antagonist bacteria differed substantially in their ability to produce antimicrobial substances such as bacillomycin (five isolates), iturin (ten isolates), fengycin (six isolates), surfactin (fourteen isolates), and bacteriocin (subtilosin A (six isolates)). Regarding the PGPR capabilities, an increase in the growth of the bacterial treated canola plants, used as a model plant, was observed. Interestingly, both bacterial isolates Bacillus subtilis K4-4 and GH3-8 appear to be more promising as biocontrol agents, since they completely suppressed the disease in greenhouse trials. Moreover, these antagonist bacteria could be used as bio-fertilizer for sustainable agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...