Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(16): eadf6059, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37075112

RESUMO

Intracellular G protein-coupled receptors (GPCRs) can be activated by permeant ligands, which contributes to agonist selectivity. Opioid receptors (ORs) provide a notable example, where opioid drugs rapidly activate ORs in the Golgi apparatus. Our knowledge on intracellular GPCR function remains incomplete, and it is unknown whether OR signaling in plasma membrane (PM) and Golgi apparatus differs. Here, we assess the recruitment of signal transducers to mu- and delta-ORs in both compartments. We find that Golgi ORs couple to Gαi/o probes and are phosphorylated but, unlike PM receptors, do not recruit ß-arrestin or a specific Gα probe. Molecular dynamics simulations with OR-transducer complexes in bilayers mimicking PM or Golgi composition reveal that the lipid environment promotes the location-selective coupling. We then show that delta-ORs in PM and Golgi have distinct effects on transcription and protein phosphorylation. The study reveals that the subcellular location defines the signaling effects of opioid drugs.


Assuntos
Analgésicos Opioides , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo
2.
Sci Adv ; 8(47): eabq3363, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427324

RESUMO

Numerous processes contribute to the regulation of G protein-coupled receptors (GPCRs), but relatively little is known about rapid mechanisms that control signaling on the seconds time scale or regulate cross-talk between receptors. Here, we reveal that the ability of some GPCR kinases (GRKs) to bind Gαq both drives acute signaling desensitization and regulates functional interactions between GPCRs. GRK2/3-mediated acute desensitization occurs within seconds, is rapidly reversible, and can occur upon local, subcellular activation. This rapid desensitization is kinase independent, insensitive to pharmacological inhibition, and generalizable across receptor families and effectors. We also find that the ability of GRK2 to bind G proteins also enables it to regulate the extent and timing of Gαq-dependent signaling cross-talk between GPCRs. Last, we find that G protein/GRK2 interactions enable a novel form of GPCR trafficking cross-talk. Together, this work reveals potent forms of Gαq-dependent GPCR regulation with wide-ranging pharmacological and physiological implications.

4.
Nat Methods ; 19(2): 231-241, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145320

RESUMO

Orexins (also called hypocretins) are hypothalamic neuropeptides that carry out essential functions in the central nervous system; however, little is known about their release and range of action in vivo owing to the limited resolution of current detection technologies. Here we developed a genetically encoded orexin sensor (OxLight1) based on the engineering of circularly permutated green fluorescent protein into the human type-2 orexin receptor. In mice OxLight1 detects optogenetically evoked release of endogenous orexins in vivo with high sensitivity. Photometry recordings of OxLight1 in mice show rapid orexin release associated with spontaneous running behavior, acute stress and sleep-to-wake transitions in different brain areas. Moreover, two-photon imaging of OxLight1 reveals orexin release in layer 2/3 of the mouse somatosensory cortex during emergence from anesthesia. Thus, OxLight1 enables sensitive and direct optical detection of orexin neuropeptides with high spatiotemporal resolution in living animals.


Assuntos
Encéfalo/metabolismo , Imagem Molecular/métodos , Receptores de Orexina/genética , Orexinas/análise , Proteínas Recombinantes/metabolismo , Animais , Comportamento Animal , Feminino , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Receptores de Orexina/metabolismo , Orexinas/genética , Orexinas/farmacologia , Fótons , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...