Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 74(1): 33-53, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28138721

RESUMO

Travertine deposition is a landscape-forming process, usually building a series of calcareous barriers differentiating the river flow into a series of cascades and ponds. The process of carbonate precipitation is a complex relationship between biogenic and abiotic causative agents, involving adapted microbial assemblages but also requiring high levels of carbonate saturation, spontaneous degassing of carbon dioxide and slightly alkaline pH. We have analysed calcareous crusts and water chemistry from four sampling sites along the Hoyoux River and its Triffoy tributary (Belgium) in winter, spring, summer and autumn 2014. Different surface textures of travertine deposits correlated with particular microenvironments and were influenced by the local water flow. In all microenvironments, we have identified the cyanobacterium Phormidium incrustatum (Nägeli) Gomont as the organism primarily responsible for carbonate precipitation and travertine fabric by combining morphological analysis with molecular sequencing (16S rRNA gene and ITS, the Internal Transcribed Spacer fragments), targeting both field populations and cultures to exclude opportunistic microorganisms responding favourably to culture conditions. Several closely related cyanobacterial strains were cultured; however, only one proved identical with the sequences obtained from the field population by direct PCR. This strain was the dominant primary producer in the calcareous deposits under study and in similar streams in Europe. The dominance of one organism that had a demonstrated association with carbonate precipitation presented a valuable opportunity to study its function in construction, preservation and fossilisation potential of ambient temperature travertine deposits. These relationships were examined using scanning electron microscopy and Raman microspectroscopy.


Assuntos
Carbonatos/análise , Cianobactérias/metabolismo , Rios , Bélgica , Cianobactérias/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , RNA Ribossômico 16S/genética
2.
Trends Microbiol ; 13(5): 229-35, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866040

RESUMO

Fungi are an important constituent of microbial endolithic assemblages in marine ecosystems. As euendoliths, they penetrate limestone, mollusk shells and other carbonate substrates, where they can exploit mineralized organic matter, attack their hosts, or engage in symbiotic relationships. They leave specific boring traces, which can be identified in the fossil record and described as trace fossils. Their distribution is independent of light and extends from the intertidal ranges to abyssal oceanic depths. Important, but insufficiently studied, is the role of aggressive endolithic fungi in skeletons of corals where they are ubiquitous and globally distributed. In healthy growing reef corals, the relationship between the coral coelenterate, endolithic algae and fungi is in a state of equilibrium, but can turn detrimental to coral health when reefs are exposed to environmental stress.


Assuntos
Antozoários/microbiologia , Ecossistema , Fungos/crescimento & desenvolvimento , Moluscos/microbiologia , Animais , Antozoários/ultraestrutura , Microscopia Eletrônica de Transmissão , Moluscos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...