Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 230, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884607

RESUMO

Iron(III) molybdate (Fe2(MoO4)3) is a commercial catalyst for the oxidative dehydrogenation (ODH) of methanol, but it has recently been shown to be relevant for other substrates as well. Despite its commercial use, a detailed mechanistic understanding of Fe2(MoO4)3 catalysts at the surface and in the bulk has been lacking, largely hampered by the lack of suitable spectroscopic methods, directly applicable under reaction conditions. Using propane ODH as an example, we highlight the potential of operando Raman and impedance spectroscopy combined with transient IR spectroscopy, to identify surface active sites and monitor the hydrogen transfer and oxygen dynamics. By comparison with the behavior of reference compounds (MoO3, MoOx/Fe2O3) a mechanistic model is proposed. The presence of iron greatly influences the reactivity behavior via oxygen diffusion but is moderated in its oxidative capacity by surface MoOx. Our approach directly elucidates fundamental properties of Fe2(MoO4)3 of general importance to selective oxidation catalysis.

2.
Front Chem ; 10: 1038327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339049

RESUMO

In this study we report an affordable synthesis and preparation of an electrochemically exfoliated few-layer 2-dimensional (2D) SnS2 anode material of high cycling durability and demonstrate its performance on the example of alkali metal batteries. The metalation mechanism consists of highly unusual and previously only speculated Sn (III)-state grasped by operando Raman spectroelectrochemistry aided by symmetry analysis. The prepared 2D material flakes were characterized by high resolution transmission electron microscopy, X-ray photoelectron and Raman spectroscopies. The operando Raman spectroelectrochemistry was chosen as a dedicated tool for the investigation of alkali-metal-ion intercalation (Li, Na, K), whereby the distortion of the A1g Raman active mode (out-of-plane S-Sn-S vibration) during battery charging exhibited a substantial dependence on the electrochemically applied potential. As a result of the structural dynamics a considerable Raman red-shift of 17.6 cm-1 was observed during metalation. Linewidth changes were used to evaluate the expansion caused by metalation, which in case of sodium and potassium were found to be minimal compared to lithium. Based on the spectroscopic and electrochemical results, a mechanism for the de-/intercalation of lithium, sodium and potassium is proposed which includes alloying in few-layer 2D SnS2 materials and the generation of point-defects.

3.
Angew Chem Int Ed Engl ; 61(39): e202209388, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834367

RESUMO

In2 O3 has emerged as a promising catalyst for CO2 activation, but a fundamental understanding of its mode of operation in CO2 hydrogenation is still missing, as the application of operando vibrational spectroscopy is challenging due to absorption effects. In this mechanistic study, we systematically address the redox processes related to the reverse water-gas shift reaction (rWGSR) over In2 O3 nanoparticles, both at the surface and in the bulk. Based on temperature-dependent operando UV/Vis spectra and a novel operando impedance approach for thermal powder catalysts, we propose oxidation by CO2 as the rate-determining step for the rWGSR. The results are consistent with redox processes, whereby hydrogen-containing surface species are shown to exhibit a promoting effect. Our findings demonstrate that oxygen/hydrogen dynamics, in addition to surface processes, are important for the activity, which is expected to be of relevance not only for In2 O3 but also for other reducible oxide catalysts.

4.
Molecules ; 26(15)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34361820

RESUMO

Li-rich and catalytically active γ-LixV2O5 (x = 1.48) was investigated as a cathode for its heterogeneous charge transfer kinetics. Using a specially designed two-electrode system lithium half cell, Butler-Volmer analysis was performed, and Raman spectra were acquired in 18 mV intervals. A direct correlation was observed between the Raman shift of the active modes Ag,Bg, Au, and Bu, and the development of the Faraday current at the working electrode. The Raman intensity and the Raman shift were implemented to replace the current in a Tafel plot used for the analysis of Butler-Volmer kinetics. Striking similarities in the charge transfer proportionality constants α were found for current and Raman-based analysis. The potential of this new method of Raman-aided electrochemical detection at the diffraction limit is discussed.

5.
Micromachines (Basel) ; 10(11)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31653033

RESUMO

In this manuscript, we outline a reliable procedure to manufacture photonic nanostructures from single-crystal diamond (SCD). Photonic nanostructures, in our case SCD nanopillars on thin (<1 µ m) platforms, are highly relevant for nanoscale sensing. The presented top-down procedure includes electron beam lithography (EBL) as well as reactive ion etching (RIE). Our method introduces a novel type of inter-layer, namely silicon, that significantly enhances the adhesion of hydrogen silsesquioxane (HSQ) electron beam resist to SCD and avoids sample charging during EBL. In contrast to previously used adhesion layers, our silicon layer can be removed using a highly-selective RIE step, which is not damaging HSQ mask structures. We thus refine published nanofabrication processes to ease a higher process reliability especially in the light of the advancing commercialization of SCD sensor devices.

6.
Dalton Trans ; 47(44): 15983-15993, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30378621

RESUMO

Reaction of differing amounts of vanadyl sulfate with p-tert-butylthiacalix[4]areneH4 and base allows access to the vanadyl-sulfate species [NEt4]4[(VO)4(µ3-OH)4(SO4)4]·½H2O (1), [HNEt3]5[(VO)5(µ3-O)4(SO4)4]·4MeCN (2·4MeCN) and [NEt4]2[(VO)6(O)2(SO4)4(OMe)(OH2)]·MeCN (3·MeCN). Similar use of p-tert-butylsulfonylcalix[4]areneH4, p-tert-butylcalix[8]areneH8 or p-tert-butylhexahomotrioxacalix[3]areneH3 led to the isolation of [HNEt3]2[H2NEt2]2{[VO(OMe)]2p-tert-butylcalix[8-SO2]areneH2} (4), [HNEt3]2[V(O)2p-tert-butylcalix[8]areneH5] (5) and [HNEt3]2[VIV2VV4O11(OMe)8] (6), respectively. Dc magnetic susceptibility measurements were performed on powdered microcrystalline samples of 1-3 in the T = 300-2 K temperature range. Preliminary screening for electrochemical water oxidation revealed some activity for 2 with turnover frequency (TOF) and number (TON) of 2.2 × 10-4 s-1 and 6.44 × 10-6 (mmol O2/mmol cat.), respectively. The compound 3 showed an improved electrochemical activity in the presence of water. This is related to the increased number and the rate of electrons exchanged during oxidation of V4+ species, facilitated by protons generated in the water discharge process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...