Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571070

RESUMO

For reduced mechanical stress, some chains with links made of metallic materials could be replaced by chains made of polymeric materials. A lower weight and a higher corrosion resistance would characterize such chains. From this point of view, research on the behavior of chain links made of polymeric materials under the action of tensile stresses can become important. Modeling by the finite element method highlighted some specific aspects of the behavior of a chain link subjected to tensile stresses. Later, we resorted to the manufacture by 3D printing of some chain links from four distinct polymeric materials, with the modification of the size of the chain link and, respectively, of the values of some of the input factors in the 3D printing process. The tensile strength of the chain links was determined using specialized equipment. The experimental results were processed mathematically to determine some empirical mathematical models that highlight the influence of the values of the input factors in the 3D printing process on the tensile strength of the samples in the form of chain links. It thus became possible to compare the results obtained for the four polymeric materials considered and identify the polymeric material that provides the highest tensile strength of the sample in the form of a chain link. The results of the experimental research showed that the highest mechanical resistance was obtained in the case of the links made of polyethylene terephthalate glycol (PETG). According to experimental results, when tested under identical conditions, PETG links can break for a force value of 40.9 N. In comparison, polylactic acid links will break for a force value of 4.70 N. Links printed in the horizontal position were almost 9-fold stronger than those printed in the vertical position. Under the same test conditions, according to the determined empirical mathematical models, PETG links printed in a horizontal position will break for a force of 300.8 N, while links printed in a vertical position will break for force values of 35.8 N.

2.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201670

RESUMO

To evaluate the sound insulation capacity of small panels made of polymeric materials by 3D printing, a Taguchi L18-type factorial experiment with eight independent variables was designed and materialized. The independent variables were the panel thickness, polymer material type, 3D printing speed, infill percent, infill pattern, layer thickness, frequency, and sound volume. Empirical mathematical models were determined through the mathematical processing of the experimental results using specialized software. These empirical mathematical models highlight the meaning and intensity of the influence exerted by the input factors in the process on the acoustic pressure level of the energy absorbed after the passage of sounds through the small panels manufactured by 3D printing from polylactic acid and polyethylene terephthalate glycol. The factor with the strongest influence was the frequency of the sounds, with a maximum of the sound pressure level for a frequency of 13,000 Hz. A polylactic acid panel between the sound source and the sound-receiving sensor reduces the sound pressure level by about 45% from 95.8 to 65.8 dB. The power function type mathematical model in the case of the energy absorbed by the panel highlights the fact that the highest values of the exponents are those attached to the sound frequency (exponent equal to 1.616) and, respectively, to the thickness of the panel (exponent equal to -0.121).

3.
Polymers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956576

RESUMO

The thermal properties of parts obtained by 3D printing from polymeric materials may be interesting in certain practical situations. One of these thermal properties is the ability of a material to expand as the temperature rises or shrink when the temperature drops. A test experiment device was designed based on the thermal expansion or negative thermal expansion of spiral test samples, made by 3D printing of polymeric materials to investigate the behavior of some polymeric materials in terms of thermal expansion or contraction. A spiral test sample was placed on an aluminum alloy plate in a spiral groove. A finite element modeling highlighted the possibility that areas of the plate and the spiral test sample have different temperatures, which means thermal expansions or contractions have different values in the spiral areas. A global experimental evaluation of four spiral test samples was made by 3D printing four distinct polymeric materials: styrene-butadiene acrylonitrile, polyethylene terephthalate, thermoplastic polyurethane, and polylactic acid, has been proposed. The mathematical processing of the experimental results using specialized software led to establishing empirical mathematical models valid for heating the test samples from -9 °C to 13 °C and cooling the test samples in temperature ranges between 70 °C and 30 °C, respectively. It was found that the negative thermal expansion has the highest values in the case of polyethylene terephthalate and the lowest in the case of thermoplastic polyurethane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...