Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mucosal Immunol ; 17(1): 41-53, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37866719

RESUMO

Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.


Assuntos
Linfócitos T CD4-Positivos , Genitália Feminina , Ciclo Menstrual , Receptores CCR5 , Transdução de Sinais , Feminino , Humanos , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Genitália Feminina/imunologia , Genitália Feminina/metabolismo , Ciclo Menstrual/imunologia , Ciclo Menstrual/fisiologia , Receptores CCR5/genética , Receptores CCR5/metabolismo , Subpopulações de Linfócitos T/imunologia , Macaca nemestrina/imunologia , Memória Imunológica , Microambiente Celular/imunologia , Microambiente Celular/fisiologia , Antagonistas dos Receptores CCR5/farmacologia
2.
Avian Dis ; 66(2): 141-147, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35510471

RESUMO

Newcastle disease virus (NDV) can infect approximately 250 avian species and causes highly contagious Newcastle disease (ND) in domestic poultry, leading to huge economic losses. There are three different pathotypes of NDV, i.e., lentogenic, mesogenic, and velogenic. Wild resident (wild) and migratory birds are natural reservoirs of NDV and are believed to play a key role in transmitting the virus to domestic poultry. The present study was conducted to determine the prevalence of NDV in wild and migratory birds in the state of Haryana, India, during two migratory seasons (2018-19 and 2019-20). In total 1379 samples (1368 choanal swabs and 11 tissue samples) were collected from live (n = 1368) or dead birds (n = 4) belonging to 53 different avian species. These samples belonged to apparently healthy (n = 1338), sick (n = 30), and dead (n = 4) birds. All samples were tested for NDV by real-time reverse transcription-PCR using M gene specific primers and probe. Of the 1379 samples, 23 samples from wild birds [Columba livia domestica (n = 12, 52.17%), Pavo cristatus (n = 9, 39.13%), and Psittaciformes (n = 2, 8.69%)] were found positive for NDV. Only one of the 23 samples (from P. cristatus) was positive for F gene, indicating it to be a mesogenic/velogenic strain. These results indicate that both lentogenic and velogenic strains of NDV are circulating in wild birds in Haryana and that further studies are needed to characterize NDV strains from wild/migratory birds and domestic poultry to determine the extent of virus transmission among these populations. This study considers the disease transmission risk from domestic pigeons and parrots to commercial poultry and vice versa, and the results emphasize the need for strict biosecurity strategies to protect commercial poultry in the region.


Prevalencia del virus de la enfermedad de Newcastle en aves silvestres y migratorias en Haryana, India. El virus de la enfermedad de Newcastle (NDV) puede infectar aproximadamente a 250 especies de aves y causa la enfermedad de Newcastle (ND) altamente contagiosa en la avicultura comercial, lo que genera enormes pérdidas económicas. Hay tres patotipos diferentes del virus de Newcastle, que incluyen, lentogénico, mesogénico y velogénico. Las aves silvestres residentes (silvestres) y migratorias son reservorios naturales del virus de Newcastle y se cree que desempeñan un papel clave en la transmisión del virus a las aves domésticas comerciales. El presente estudio se realizó para determinar la prevalencia del virus de Newcastle en aves silvestres y migratorias en el estado de Haryana, India, durante dos temporadas migratorias (2018-19 y 2019-20). En total, se recolectaron 1379 muestras (1368 hisopos coanales y 11 muestras de tejido) de aves vivas (n = 1368) o muertas (n = 4) pertenecientes a 53 especies de aves diferentes. Estas muestras pertenecían a aves aparentemente sanas (n = 1338), enfermas (n = 30) y muertas (n = 4). Todas las muestras se analizaron para detectar al virus de Newcastle mediante transcripción reversa y PCR en tiempo real utilizando iniciadores y una sonda específicos del gene M. De las 1379 muestras, 23 muestras de aves silvestres [Columba livia domestica (n = 12, 52.17 %), Pavo cristatus (n = 9, 39.13 %) y Psittaciformes (n = 2, 8.69 %)] resultaron positivas para el virus de Newcastle. Solo una de las 23 muestras (de P. cristatus) fue positiva para el gene F, lo que indica que se trata de una cepa mesogénica/velogénica. Estos resultados indican que tanto las cepas lentogénicas como las velogénicas del virus de Newcastle están circulando en las aves silvestres de Haryana y que se necesitan más estudios para caracterizar las cepas del virus de Newcastle de las aves silvestres/migratorias y de las aves domésticas para determinar el alcance de la transmisión del virus entre estas poblaciones. Este estudio considera el riesgo de transmisión de la enfermedad de las palomasdomésticas y loros a las aves comerciales y viceversa, y los resultados enfatizan la necesidad de estrategias estrictas de bioseguridad para proteger las aves comerciales en la región.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Vírus da Doença de Newcastle/genética , Columbidae , Prevalência , Aves Domésticas , Animais Selvagens , Filogenia
3.
Vet Med Sci ; 8(3): 1146-1156, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199954

RESUMO

BACKGROUND: Newcastle disease (ND) is an economically important viral disease affecting the poultry industry. In Kerala, a state in South India, incidences of ND in commercial and backyard poultry have been reported. But a systematic statewide study on the prevalence of the disease has not been carried out. OBJECTIVES: A cross-sectional survey was performed to detect the presence of Newcastle disease virus (NDV) in suspect cases and among apparently healthy commercial flocks and backyard poultry, in the state and to identify risk factors for NDV infection. METHODS: Real-time reverse transcription-PCR (RT-PCR) was used to detect the M gene of NDV in choanal swabs and tissue samples collected from live and dead birds, respectively and the results were statistically analysed. RESULTS: The predominant clinical signs of the examined birds included mild respiratory signs, huddling together and greenish diarrhoea. Nervous signs in the form of torticollis were noticed in birds in some of the affected flocks. On necropsy, many birds had haemorrhages in the proventriculus and caecal tonsils which were suggestive of ND. Of the 2079 samples tested, 167 (8.0%) were positive for the NDV M-gene by RT-PCR. Among 893 samples collected from diseased flocks, 129 (14.5%), were positive for M gene with pairwise relative risk (RR) of 15.6 as compared to apparently healthy flocks where 6 out of 650 (0.9%) samples were positive. All positive samples were from poultry; none of the ducks, pigeons, turkey and wild birds were positive. Commercial broilers were at higher risk of infection than commercial layers (RR: 4.5) and backyard poultry (RR: 4.9). Similarly, birds reared under intensive housing conditions were at a higher risk of being infected as compared to those reared under semi-intensive (RR: 6.7) or backyard housing (RR: 2.1). Multivariable analysis indicated that significantly higher risk of infection exists during migratory season and during ND outbreaks occurring nearby. Further, lower risk was observed with flock vaccination and backyard or semi-intensive housing when compared to intensive housing. When the M gene positive samples were tested by RT-PCR to determine whether the detected NDV were mesogenic/velogenic, 7 (4.2%) were positive. CONCLUSIONS: In Kerala, NDV is endemic in poultry with birds reared commercially under intensive rearing systems being affected the most. The outcome of this study also provides a link between epidemiologic knowledge and the development of successful disease control measures. Statistical analysis suggests that wild bird migration season and presence of migratory birds influences the prevalence of the virus in the State. Further studies are needed to genotype and sub-genotype the detected viruses and to generate baseline data on the prevalence of NDV strains, design better detection strategies, and determine patterns of NDV transmission across domestic poultry and wild bird populations in Kerala.


Assuntos
Doença de Newcastle , Doenças das Aves Domésticas , Animais , Animais Selvagens , Galinhas , Estudos Transversais , Habitação , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/genética , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia , Risco
4.
PLoS One ; 17(2): e0264028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35171961

RESUMO

Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a contagious disease that affects a variety of domestic and wild avian species. Though ND is vaccine-preventable, it is a persistent threat to poultry industry across the globe. The disease represents a leading cause of morbidity and mortality in chickens. To better understand the epidemiology of NDV among commercial and backyard chickens of Odisha, where chicken farming is being prioritized to assist with poverty alleviation, a cross-sectional study was conducted in two distinct seasons during 2018. Choanal swabs (n = 1361) from live birds (commercial layers, broilers, and backyard chicken) and tracheal tissues from dead birds (n = 10) were collected and tested by real-time reverse transcription polymerase chain reaction (RT-PCR) for the presence of matrix (M) and fusion (F) genes of NDV. Risk factors at the flock and individual bird levels (health status, ND vaccination status, geographical zone, management system, and housing) were assessed using multivariable logistic regression analyses. Of the 1371 samples tested, 160 were positive for M gene amplification indicating an overall apparent prevalence of 11.7% (95% CI 10.1-13.5%). Circulation of virulent NDV strains was also evident with apparent prevalence of 8.1% (13/160; 95% CI: 4.8-13.4%). In addition, commercial birds had significantly higher odds (75%) of being infected with NDV as compared to backyard poultry (p = 0.01). This study helps fill a knowledge gap in the prevalence and distribution of NDV in apparently healthy birds in eastern India, and provides a framework for future longitudinal research of NDV risk and mitigation in targeted geographies-a step forward for effective control of ND in Odisha.


Assuntos
Anticorpos Antivirais/sangue , Doença de Newcastle/epidemiologia , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/epidemiologia , Proteínas Virais/genética , Animais , Anticorpos Antivirais/imunologia , Galinhas , Estudos Transversais , Feminino , Índia/epidemiologia , Masculino , Doença de Newcastle/genética , Doença de Newcastle/imunologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Fatores de Risco
5.
Front Vet Sci ; 8: 725232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805330

RESUMO

Newcastle disease virus (NDV) causes Newcastle disease (ND) in poultry. The ND is a highly contagious disease, which is endemic in several countries despite regular vaccination with live or killed vaccines. Studies on NDV in India are mostly targeted toward its detection and characterization from disease outbreaks. A surveillance study was undertaken to determine NDV prevalence throughout the state of Haryana from March 2018 to March 2020 using a stratified sampling scheme. The state was divided into three different zones and a total of 4,001 choanal swab samples were collected from backyard poultry, commercial broilers, and layers. These samples were tested for the M gene of NDV using real-time RT-PCR. Of the 4,001 samples tested, 392 were positive (9.8% apparent prevalence; 95% CI: 8.9-10.8%) for the M gene. Of these 392 M gene positive samples, 35 (8.9%; 95% CI: 6.4-12.3%) were found to be positive based on F gene real-time RT-PCR. Circulation of NDV in commercial and backyard poultry highlights the importance of surveillance studies even in apparently healthy flocks. The information generated in this study should contribute to better understanding of NDV epidemiology in India and may help formulate appropriate disease control strategies for commercial and backyard birds.

6.
PLoS One ; 15(9): e0237590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32925949

RESUMO

Bushmeat harvesting and consumption represents a potential risk for the spillover of endemic zoonotic pathogens, yet remains a common practice in many parts of the world. Given that the harvesting and selling of bushmeat is illegal in Tanzania and other parts of Africa, the supply chain is informal and may include hunters, whole-sellers, retailers, and individual resellers who typically sell bushmeat in small pieces. These pieces are often further processed, obscuring species-identifying morphological characteristics, contributing to incomplete or mistaken knowledge of species of origin and potentially confounding assessments of pathogen spillover risk and bushmeat offtake. The current investigation sought to identify the species of origin and assess the concordance between seller-reported and laboratory-confirmed species of origin of bushmeat harvested from in and around the Serengeti National Park in Tanzania. After obtaining necessary permits, the species of origin of a total of 151 bushmeat samples purchased from known intermediaries from 2016 to 2018 were characterized by PCR and sequence analysis of the cytochrome B (CytB) gene. Based on these sequence analyses, 30%, 95% Confidence Interval (CI: 24.4-38.6) of bushmeat samples were misidentified by sellers. Misreporting amongst the top five source species (wildebeest, buffalo, impala, zebra, and giraffe) ranged from 20% (CI: 11.4-33.2) for samples reported as wildebeest to 47% (CI: 22.2-72.7) for samples reported as zebra although there was no systematic bias in reporting. Our findings suggest that while misreporting errors are unlikely to confound wildlife offtake estimates for bushmeat consumption within the Serengeti ecosystem, the role of misreporting bias on the risk of spillover events of endemic zoonotic infections from bushmeat requires further investigation.


Assuntos
Animais Selvagens , Carne/provisão & distribuição , Zoonoses/etiologia , Animais , Animais Selvagens/genética , Búfalos/genética , Comércio , Citocromos b/genética , Ecossistema , Equidae/genética , Girafas/genética , Humanos , Parques Recreativos , Tanzânia/epidemiologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32509599

RESUMO

Avian influenza viruses (AIVs) cause major economic losses to the global poultry industry. Many host factors have been identified that act as regulators of the inflammatory response and virus replication in influenza A virus (IAV) infected cells including nucleotide-binding oligomerization domain (NOD) like receptor (NLR) family proteins. Evidence is emerging that NLRC5, the largest NLR member, is a regulator of host immune responses against invading pathogens including viruses; however, its role in the avian immune system and AIV pathogenesis has not been fully explored. In this study, we found that NLRC5 is activated by a range of low and highly pathogenic AIVs in primary chicken lung cells and a chicken macrophage cell line. Further, siRNA mediated NLRC5 knockdown in chicken macrophages resulted in a significant reduction in AIV replication which was associated with the upregulation of genes associated with activated NFκB signaling pathway. The knockdown of NLRC5 enhanced the expression of genes known to be associated with viral defense and decreased innate cytokine gene expression following AIV infection. Overall, our investigation strongly suggests that NLRC5 is a pro-viral factor during IAV infection in chicken and may contribute to pathogenesis through innate cytokine regulation. Further studies are warranted to investigate the IAV protein(s) that may regulate activation of NLRC5.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Galinhas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos
8.
Sci Rep ; 9(1): 18086, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792246

RESUMO

Bushmeat, the meat and organs derived from wildlife species, is a common source of animal protein in the diets of those living in sub-Saharan Africa and is frequently associated with zoonotic spillover of dangerous pathogens. Given the frequent consumption of bushmeat in this region and the lack of knowledge about the microbial communities associated with this meat, the microbiome of 56 fresh and processed bushmeat samples ascertained from three districts in the Western Serengeti ecosystem in Tanzania was characterized using 16S rRNA metagenomic sequencing. The results show that the most abundant phyla present in bushmeat samples include Firmicutes (67.8%), Proteobacteria (18.4%), Cyanobacteria (8.9%), and Bacteroidetes (3.1%). Regardless of wildlife species, sample condition, season, or region, the microbiome is diverse across all samples, with no significant difference in alpha or beta diversity. The findings also suggest the presence of DNA signatures of potentially dangerous zoonotic pathogens, including those from the genus Bacillus, Brucella, Coxiella, and others, in bushmeat. Together, this investigation provides a better understanding of the microbiome associated with this major food source in samples collected from the Western Serengeti in Tanzania and highlights a need for future investigations on the potential health risks associated with the harvesting, trade, and consumption of bushmeat in Sub-Saharan Africa.


Assuntos
Animais Selvagens/microbiologia , Carne/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Humanos , Carne/provisão & distribuição , Microbiota , RNA Ribossômico 16S/genética , Tanzânia , Zoonoses/etiologia , Zoonoses/microbiologia
9.
Sci Rep ; 9(1): 17573, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772281

RESUMO

Considerable effort has been directed toward controlling Johne's disease (JD), a chronic granulomatous intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) in cattle and other ruminants. However, progress in controlling the spread of MAP infection has been impeded by the lack of reliable diagnostic tests that can identify animals early in the infection process and help break the transmission chain. To identify reliable antigens for early diagnosis of MAP infection, we constructed a MAP protein array with 868 purified recombinant MAP proteins, and screened a total of 180 well-characterized serum samples from cows assigned to 4 groups based on previous serological and fecal test results: negative low exposure (NL, n = 30); negative high exposure (NH, n = 30); fecal-positive, ELISA-negative (F + E-, n = 60); and both fecal- and ELISA-positive (F + E+, n = 60). The analyses identified a total of 49 candidate antigens in the NH, F + E-, and F + E+ with reactivity compared with the NL group (p < 0.01), a majority of which have not been previously identified. While some of the antigens were identified as reactive in only one of the groups, others showed reactivity in multiple groups, including NH (n = 28), F + E- (n = 26), and F + E+ (n = 17) groups. Using combinations of top reactive antigens in each group, the results reveal sensitivities of 60.0%, 73.3%, and 81.7% in the NH, F + E-, and F + E+, respectively at 90% specificity, suggesting that early detection of infection in animals may be possible and enable better opportunities to reduce within herd transmission that may be otherwise missed by traditional serological assays that are biased towards more heavily infected animals. Together, the results suggest that several of the novel candidate antigens identified in this study, particularly those that were reactive in the NH and F + E- groups, have potential utility for the early sero-diagnosis of MAP infection.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Análise Serial de Proteínas/veterinária , Animais , Bovinos , Doenças dos Bovinos/imunologia , Diagnóstico Precoce , Ensaio de Imunoadsorção Enzimática , Paratuberculose/imunologia , Testes Sorológicos/métodos , Testes Sorológicos/veterinária
10.
Microbiol Resour Announc ; 8(27)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270192

RESUMO

The molecular characterization of three Newcastle disease viruses (NDV) isolated from backyard chickens in the state of Haryana, India, was undertaken. Two genotype II strains and one genotype XIIIc class II isolate with genome sizes of 15,186 and 15,192 nucleotides (nt), respectively, were identified.

11.
Sci Rep ; 9(1): 7209, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076577

RESUMO

Newcastle disease virus (NDV) is a threat to the global poultry industry, but particularly for smallholder farmers in low- and middle-income countries. Previous reports suggest that some breeds of chickens are less susceptible to NDV infection, however, the mechanisms contributing to this are unknown. We here examined the comparative transcriptional responses of innate immune genes to NDV infection in inbred sublines of the Fayoumi and Leghorn breeds known to differ in their relative susceptibility to infection as well as at the microchromosome bearing the major histocompatability complex (MHC) locus. The analysis identified a set of five core genes, Mx1, IRF1, IRF7, STAT1, and SOCS1, that are up-regulated regardless of subline. Several genes were differentially expressed in a breed- or subline-dependent manner. The breed-dependent response involved TLR3, NOS2, LITAF, and IFIH1 in the Fayoumi versus IL8, CAMP, and CCL4 in the Leghorn. Further analysis identified subline-dependent differences in the pro-inflammatory response within the Fayoumi breed that are likely influenced by the MHC. These results have identified conserved, breed-dependent, and subline-dependent innate immune responses to NDV infection in chickens, and provide a strong framework for the future characterization of the specific roles of genes and pathways that influence the susceptibility of chickens to NDV infection.


Assuntos
Imunidade Inata , Doença de Newcastle/genética , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Animais , Embrião de Galinha , Resistência à Doença , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Doença de Newcastle/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Seleção Artificial , Regulação para Cima
12.
Nat Commun ; 10(1): 2005, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31043606

RESUMO

A long-acting injectable formulation of the HIV integrase inhibitor cabotegravir (CAB-LA) is currently in clinical development for PrEP. Although the long plasma half-life of CAB-LA is an important attribute for PrEP, it also raises concerns about drug resistance emergence if someone becomes infected with HIV, or if PrEP is initiated during undiagnosed acute infection. Here we use a macaque model of SHIV infection to model risks of drug resistance to CAB-LA PrEP. Six macaques infected with SHIV received CAB-LA before seroconversion. We show integrase mutations G118R, E92G/Q, or G140R in plasma from 3/6 macaques as early as day 57, and identify G118R and E92Q in viruses from vaginal and rectal fluids. G118R and G140R confer > 800-fold resistance to CAB and cross-resistance to all licensed integrase inhibitors. Our results emphasize the need for appropriate HIV testing strategies before and possibly shortly after initiating CAB LA PrEP to exclude acute infection.


Assuntos
Farmacorresistência Viral/genética , Infecções por HIV/prevenção & controle , Inibidores de Integrase de HIV/farmacologia , Profilaxia Pré-Exposição/métodos , Piridonas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Doença Aguda , Animais , Modelos Animais de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Feminino , Células HEK293 , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , Integrase de HIV/genética , Inibidores de Integrase de HIV/sangue , Inibidores de Integrase de HIV/uso terapêutico , HIV-1/efeitos dos fármacos , HIV-1/genética , Meia-Vida , Humanos , Macaca , Masculino , Piridonas/sangue , Piridonas/uso terapêutico , Soroconversão , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Fatores de Tempo
13.
Front Genet ; 9: 61, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535762

RESUMO

Traditional approaches to assess the immune response of chickens to infection are through animal trials, which are expensive, require enhanced biosecurity, compromise welfare, and are frequently influenced by confounding variables. Since the chicken embryo becomes immunocompetent prior to hatch, we here characterized the transcriptional response of selected innate immune genes to Newcastle disease virus (NDV) infection in chicken embryos at days 10, 14, and 18 of embryonic development. The results suggest that the innate immune response 72 h after challenge of 18-day chicken embryo is both consistent and robust. The expression of CCL5, Mx1, and TLR3 in lung tissues of NDV challenged chicken embryos from the outbred Kuroiler and Tanzanian local ecotype lines showed that their expression was several orders of magnitude higher in the Kuroiler than in the local ecotypes. Next, the expression patterns of three additional innate-immunity related genes, IL-8, IRF-1, and STAT1, were examined in the highly congenic Fayoumi (M5.1 and M15.2) and Leghorn (Ghs6 and Ghs13) sublines that differ only at the microchromosome bearing the major histocompatibility locus. The results show that the Ghs13 Leghorn subline had a consistently higher expression of all genes except IL-8 and expression seemed to be subline-dependent rather than breed-dependent, suggesting that the innate immune response of chicken embryos to NDV infection may be genetically controlled by the MHC-locus. Taken together, the results suggest that the chicken embryo may represent a promising model to studying the patterns and sources of variation of the avian innate immune response to infection with NDV and related pathogens.

14.
PLoS One ; 12(12): e0189783, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261761

RESUMO

Johne's Disease (JD), caused by Mycobacterium avium subspecies paratuberculosis (MAP), results in significant economic loss to livestock production. The early detection of MAP infection in animals with extant serological assays has remained challenging due to the low sensitivity of commercially available ELISA tests, a fact that has hampered the development of effective JD control programs. Our recent protein microarray-based studies identified several promising candidate antigens that are immunogenic during different stages of MAP infection. To evaluate these antigens for use in diagnostic assays and reliably identify animals with MAP infection, a multiplex (Luminex®) assay was developed using color-coded flourescent beads coupled to 6 MAP recombinant proteins and applied to screen 180 serum and 90 milk samples from cows at different stages of MAP infection including negative (NL), fecal test positive/ELISA negative (F+E-), and fecal positive/ELISA positive (F+E+). The results show that while serum antibody reactivities to each of the 6 antigens were highest in F+E+ group, antibody reactivity to three of the six antigens were identified in the F+E- group, suggesting that these three antigens are expressed and provoke antibody responses during the early infection stages with MAP. Further, antibodies against all six antigens were elevated in milk samples from both the F+E- and F+E+ groups in comparison to the NL group (p<0.01). Taken together, the results of our investigation suggest that multiplex bead-based assays are able to reliably identify MAP infection, even during early stages when antibody responses in animals are undetectable with widely used commercial ELISA tests.


Assuntos
Doenças dos Bovinos/microbiologia , Imunoensaio/métodos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/microbiologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/imunologia , Fluorescência , Leite/microbiologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/sangue , Paratuberculose/imunologia , Curva ROC , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Soro/microbiologia
15.
PLoS One ; 12(9): e0184373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28863177

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne's disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence and causes serious animal health problems and significant economic loss in domesticated ruminants throughout the world. Since serological detection of MAP infected animals during the early stages of infection remains challenging due to the low sensitivity of extant assays, we screened 180 well-characterized serum samples using a whole proteome microarray from Mycobacterium tuberculosis (MTB), a close relative of MAP. Based on extensive testing of serum and milk samples, fecal culture and qPCR for direct detection of MAP, the samples were previously assigned to one of 4 groups: negative low exposure (n = 30, NL); negative high exposure (n = 30, NH); fecal positive, ELISA negative (n = 60, F+E-); and fecal positive, ELISA positive (n = 60, F+E+). Of the 740 reactive proteins, several antigens were serologically recognized early but not late in infection, suggesting a complex and dynamic evolution of the MAP humoral immune response during disease progression. Ordinal logistic regression models identified a subset of 47 candidate proteins with significantly different normalized intensity values (p<0.05), including 12 in the NH and 23 in F+E- groups, suggesting potential utility for the early detection of MAP infected animals. Next, the diagnostic utility of four MAP orthologs (MAP1569, MAP2942c, MAP2609, and MAP1272c) was assessed and reveal moderate to high diagnostic sensitivities (range 48.3% to 76.7%) and specificity (range 96.7% to 100%), with a combined 88.3% sensitivity and 96.7% specificity. Taken together, the results of our analyses have identified several candidate MAP proteins of potential utility for the early detection of MAP infection, as well individual MAP proteins that may serve as the foundation for the next generation of well-defined serological diagnosis of JD in cattle.


Assuntos
Doenças dos Bovinos/diagnóstico , Mycobacterium avium subsp. paratuberculosis/imunologia , Paratuberculose/diagnóstico , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Bovinos , Doenças dos Bovinos/sangue , Doenças dos Bovinos/microbiologia , Ensaio de Imunoadsorção Enzimática , Fezes , Mycobacterium tuberculosis/imunologia , Paratuberculose/sangue , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Análise de Regressão , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...