Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 12: 603767, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603709

RESUMO

Objective: Telerehabilitation (TR) is now, in the context of COVID-19, more clinically relevant than ever as a major source of outpatient care. The social network of a patient is a critical yet understudied factor in the success of TR that may influence both engagement in therapy programs and post-stroke outcomes. We designed a 12-week home-based TR program for stroke patients and evaluated which social factors might be related to motor gains and reduced depressive symptoms. Methods: Stroke patients (n = 13) with arm motor deficits underwent supervised home-based TR for 12 weeks with routine assessments of motor function and mood. At the 6-week midpoint, we mapped each patient's personal social network and evaluated relationships between social network metrics and functional improvements from TR. Finally, we compared social networks of TR patients with a historical cohort of 176 stroke patients who did not receive any TR to identify social network differences. Results: Both network size and network density were related to walk time improvement (p = 0.025; p = 0.003). Social network density was related to arm motor gains (p = 0.003). Social network size was related to reduced depressive symptoms (p = 0.015). TR patient networks were larger (p = 0.012) and less dense (p = 0.046) than historical stroke control networks. Conclusions: Social network structure is positively related to improvement in motor status and mood from TR. TR patients had larger and more open social networks than stroke patients who did not receive TR. Understanding how social networks intersect with TR outcomes is crucial to maximize effects of virtual rehabilitation.

3.
Telemed J E Health ; 26(11): 1414-1418, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32031913

RESUMO

Background: Visual impairment, specifically anterior segment pathology, presents a significant burden of disease in the world. Introduction: Inexpensive tools are necessary to improve eye health of residents in developing countries where care is difficult to access. Our study aimed at determining whether a $5 macro lens attached to a smartphone camera is an effective anterior segment imaging method for screening diseases. Materials and Methods: Fifty four (n = 54) patients had anterior segment imaging performed by using an Easy Macro lens and an iPhone. Imaging was performed at the Floating Doctors' mobile clinic sites in Panama. Images were sent back and graded by two board-certified ophthalmologists using a modified version of the FOTO-ED scale. Statistical analysis was performed by using a Wilcoxon signed-rank test to compare grades between the two imaging modalities. Results: There was no significant difference in overall clinical utility of images obtained by the iPhone versus Easy Macro lens. The iPhone was significantly superior in imaging of the lens and conjunctiva, whereas the Easy Macro lens was superior in regards to the anterior chamber, iris, and lens. Discussion: The imaging modality that best captures pathology is dependent on what part of the anterior segment is being examined. An imaging protocol with a pair of images, one from a smartphone and one from a macro lens, would have significant clinical utility. Conclusion: Our study demonstrates how minimally trained users can deliver effective eye screening via a telemedicine-based approach in a resource-deprived setting. Future directions would be to develop a telemedicine protocol and determine whether it improves clinically measurable outcomes in patients.


Assuntos
Fotografação , Telemedicina , Humanos , Programas de Rastreamento , Panamá , Smartphone
4.
Front Neurol ; 11: 611453, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33613417

RESUMO

Introduction: High doses of activity-based rehabilitation therapy improve outcomes after stroke, but many patients do not receive this for various reasons such as poor access, transportation difficulties, and low compliance. Home-based telerehabilitation (TR) can address these issues. The current study evaluated the feasibility of an expanded TR program. Methods: Under the supervision of a licensed therapist, adults with stroke and limb weakness received home-based TR (1 h/day, 6 days/week) delivered using games and exercises. New features examined include extending therapy to 12 weeks duration, treating both arm and leg motor deficits, patient assessments performed with no therapist supervision, adding sensors to real objects, ingesting a daily experimental (placebo) pill, and generating automated actionable reports. Results: Enrollees (n = 13) were median age 61 (IQR 52-65.5), and 129 (52-486) days post-stroke. Patients initiated therapy on 79.9% of assigned days and completed therapy on 65.7% of days; median therapy dose was 50.4 (33.3-56.7) h. Non-compliance doubled during weeks 7-12. Modified Rankin scores improved in 6/13 patients, 3 of whom were >3 months post-stroke. Fugl-Meyer motor scores increased by 6 (2.5-12.5) points in the arm and 1 (-0.5 to 5) point in the leg. Assessments spanning numerous dimensions of stroke outcomes were successfully implemented; some, including a weekly measure that documented a decline in fatigue (p = 0.004), were successfully scored without therapist supervision. Using data from an attached sensor, real objects could be used to drive game play. The experimental pill was taken on 90.9% of therapy days. Automatic actionable reports reliably notified study personnel when critical values were reached. Conclusions: Several new features performed well, and useful insights were obtained for those that did not. A home-based telehealth system supports a holistic approach to rehabilitation care, including intensive rehabilitation therapy, secondary stroke prevention, screening for complications of stroke, and daily ingestion of a pill. This feasibility study informs future efforts to expand stroke TR. Clinical Trial Registration: Clinicaltrials.gov, # NCT03460587.

5.
Nat Commun ; 10(1): 1886, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015456

RESUMO

Intermittent food deprivation (fasting, IF) improves mood and cognition and protects neurons against excitotoxic degeneration in animal models of epilepsy and Alzheimer's disease (AD). The mechanisms by which neuronal networks adapt to IF and how such adaptations impact neuropathological processes are unknown. We show that hippocampal neuronal networks adapt to IF by enhancing GABAergic tone, which is associated with reduced anxiety-like behaviors and improved hippocampus-dependent memory. These neuronal network and behavioral adaptations require the mitochondrial protein deacetylase SIRT3 as they are abolished in SIRT3-deficient mice and wild type mice in which SIRT3 is selectively depleted from hippocampal neurons. In the AppNL-G-F mouse model of AD, IF reduces neuronal network hyperexcitability and ameliorates deficits in hippocampal synaptic plasticity in a SIRT3-dependent manner. These findings demonstrate a role for a mitochondrial protein deacetylase in hippocampal neurons in behavioral and GABAergic synaptic adaptations to IF.


Assuntos
Doença de Alzheimer/dietoterapia , Jejum/fisiologia , Neurônios GABAérgicos/metabolismo , Hipocampo/fisiologia , Sirtuína 3/metabolismo , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/fisiologia , Cognição/fisiologia , Excitabilidade Cortical/fisiologia , Modelos Animais de Doenças , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Estresse Oxidativo/fisiologia , Sirtuína 3/genética , Superóxido Dismutase/genética
6.
PLoS One ; 13(5): e0196223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29715265

RESUMO

Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT) control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM) revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq) screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide) had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in the hippocampus and that indirect regulation of Ide transcription may be involved in these phenotypes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiopatologia , Proteínas de Homeodomínio/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Convulsões/fisiopatologia , Animais , Feminino , Perfilação da Expressão Gênica , Potenciação de Longa Duração , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia
7.
Neurobiol Aging ; 66: 165-176, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29579687

RESUMO

Alzheimer's disease (AD) involves progressive deposition of amyloid ß-peptide (Aß), synapse loss, and neuronal death, which occur in brain regions critical for learning and memory. Considerable evidence suggests that lipid peroxidation contributes to synaptic dysfunction and neuronal degeneration, both upstream and downstream of Aß pathology. Recent findings suggest that lipid peroxidation can be inhibited by replacement of polyunsaturated fatty acids (PUFA) with isotope-reinforced (deuterated) PUFA (D-PUFA), and that D-PUFA can protect neurons in experimental models of Parkinson's disease. Here, we determined whether dietary D-PUFA would ameliorate Aß pathology and/or cognitive deficits in a mouse model of AD (amyloid precursor protein/presenilin 1 double mutant transgenic mice). The D-PUFA diet did not ameliorate spatial learning and memory deficits in the AD mice. Compared to mice fed an hydrogenated-PUFA control diet, those fed D-PUFA for 5 months exhibited high levels of incorporation of deuterium into arachidonic acid and docosahexaenoic acid, and reduced concentrations of lipid peroxidation products (F2 isoprostanes and neuroprostanes), in the brain tissues. Concentrations of Aß40 and Aß38 in the hippocampus were significantly lower, with a trend to reduced concentrations of Aß42, in mice fed D-PUFA compared to those fed hydrogenated-PUFA. We conclude that a D-PUFA diet reduces the brain tissue concentrations of both arachidonic acid and docosahexaenoic acid oxidation products, as well as the concentration of Aßs.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácidos Graxos Insaturados/farmacologia , Hipocampo/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Doença de Alzheimer/psicologia , Animais , Depressão Química , Deutério , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/química , Feminino , Masculino , Memória , Camundongos Transgênicos , Aprendizagem Espacial
8.
Aging Cell ; 16(6): 1430-1433, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28921841

RESUMO

Obesity, metabolic syndrome, and hyperleptinemia are associated with aging and age-associated diseases including prostate cancer. One experimental approach to inhibit tumor growth is to reduce dietary protein intake and hence levels of circulating amino acids. Dietary protein restriction (PR) increases insulin sensitivity and suppresses prostate cancer cell tumor growth in animal models, providing a rationale for clinical trials. We sought to demonstrate that biomarkers derived from plasma extracellular vesicles (EVs) reflect systemic leptin and insulin signaling and respond to dietary interventions. We studied plasma samples from men with prostate cancer awaiting prostatectomy who participated in a randomized trial of one month of PR or control diet. We found increased levels of leptin receptor in the PR group in total plasma EVs and in a subpopulation of plasma EVs expressing the neuronal marker L1CAM. Protein restriction also shifted the phosphorylation status of the insulin receptor signal transducer protein IRS1 in L1CAM+ EVs in a manner suggestive of improved insulin sensitivity. Dietary PR modifies indicators of leptin and insulin signaling in circulating EVs. These findings are consistent with improved insulin and leptin sensitivity in response to PR and open a new window for following physiologic responses to dietary interventions in humans.


Assuntos
Dieta com Restrição de Proteínas , Vesículas Extracelulares/metabolismo , Insulina/sangue , Leptina/sangue , Neoplasias da Próstata/sangue , Restrição Calórica , Metabolismo Energético , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/patologia
9.
Free Radic Biol Med ; 102: 203-216, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27908782

RESUMO

An important concept in neurobiology is "neurons that fire together, wire together" which means that the formation and maintenance of synapses is promoted by activation of those synapses. Very similar to the effects of the stress of exercise on muscle cells, emerging findings suggest that neurons respond to activity by activating signaling pathways (e.g., Ca2+, CREB, PGC-1α, NF-κB) that stimulate mitochondrial biogenesis and cellular stress resistance. These pathways are also activated by aerobic exercise and food deprivation, two bioenergetic challenges of fundamental importance in the evolution of the brains of all mammals, including humans. The metabolic 'switch' in fuel source from liver glycogen store-derived glucose to adipose cell-derived fatty acids and their ketone metabolites during fasting and sustained exercise, appears to be a pivotal trigger of both brain-intrinsic and peripheral organ-derived signals that enhance learning and memory and underlying synaptic plasticity and neurogenesis. Brain-intrinsic extracellular signals include the excitatory neurotransmitter glutamate and the neurotrophic factor BDNF, and peripheral signals may include the liver-derived ketone 3-hydroxybutyrate and the muscle cell-derived protein irisin. Emerging findings suggest that fasting, exercise and an intellectually challenging lifestyle can protect neurons against the dysfunction and degeneration that they would otherwise suffer in acute brain injuries (stroke and head trauma) and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease. Among the prominent intracellular responses of neurons to these bioenergetic challenges are up-regulation of antioxidant defenses, autophagy/mitophagy and DNA repair. A better understanding of such fundamental hormesis-based adaptive neuronal response mechanisms is expected to result in the development and implementation of novel interventions to promote optimal brain function and healthy brain aging.


Assuntos
Mitocôndrias/metabolismo , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Biogênese de Organelas , Reparo do DNA/genética , Resistência à Doença/genética , Metabolismo Energético , Humanos , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal/genética , Neurônios/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...