Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Organ Transplant Med ; 8(2): 110-116, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828171

RESUMO

BACKGROUND: Kidney transplantation is the treatment of choice for patients with end-stage renal disease. OBJECTIVE: To evaluate the changes in serum soluble TNF-like weak inducer of apoptosis (sTWEAK) and fibroblast growth factor 23 (FGF-23) in hemodialysis (HD) patients and renal transplant recipients (RTR). METHODS: Serum samples were obtained from 30 patients on chronic HD, 30 RTRs, and 30 normal controls. Biochemical factors, sTWEAK, FGF-23, and interlukin-6 (IL-6) were measured by standard methods. RESULTS: Serum levels of sTWEAK in RTRs were significantly higher than those in the HD patients (p=0.025); RTR and HD patients had significantly lower sTWEAK levels than the controls (p=0.001 and p= 0.038, respectively). Serum levels of FGF-23 in HD patients were significantly (p=0.001) higher than those in the RTR; the level was higher in both studied groups compared to that in the controls (p=0.001 for both groups). The mean serum level of IL-6 in HD was significantly higher than that in RTR patients (p=0.013). IL-6 levels in both groups were significantly higher than those in controls (p=0.001 and p= 0.012, respectively). In HD group a negative correlation was found between FGF-23 and sTWEAK (r= 0.375, p=0.041); there were also a significant correlation between FGF-23 and IL-6 (r= 0.480, p= 0.007) and between IL-6 and sTWEAK (r= 0.409, p=0.025). CONCLUSION: We found that serum sTWEAK is decreased and FGF-23 is increased in HD and RTR groups comparing with the control group. However, further studies are needed to shed light over their direct role on atherosclerosis and cardiovascular outcomes.

2.
Int J Occup Environ Med ; 7(3): 186-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27393326

RESUMO

Operator's role in industrial control centers takes place in time, which is one of the most important determinants of whether an expected action is going to be successful or not. In certain situations, due to the complex nature of the work, the existing interfaces and already prepared procedures do not meet the dynamic requirements of operator's cognitive demands, making the control tasks unnecessarily difficult. This study was conducted to identify ergonomic issues with a specific industrial control panel, and redesign its layout and elements to enhance its usability. Task and link analysis methodologies were implemented. All essential functions and supporting operations were identified at the required trivial levels. Next, the weight of any possible link between the elements of the panel was computed as a composite index of frequency and importance. Finally, all components were rearranged within a new layout, and a computerized mockup was generated. A total of 8 primary tasks was identified, including 4 system failure handling tasks, switching between manual and automated modes, and 3 types of routine vigilance and control tasks. These tasks were broken down into 28 functions and 145 supporting operations, accordingly. Higher link values were observed between hand rest position and 2 elements. Also, 6 other components showed robust linkages. In conclusion, computer modeling can reduce the likelihood of accidents and near misses in industrial control rooms by considering the operators' misperception or mental burden and correcting poor design of the panels and inappropriate task allocation.


Assuntos
Ergonomia/instrumentação , Ergonomia/métodos , Sistemas Homem-Máquina , Desenho Assistido por Computador , Humanos , Indústrias
3.
Mater Sci Eng C Mater Biol Appl ; 43: 587-97, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25175253

RESUMO

Rapid prototyping (RP) has been a promising technique for producing tissue engineering scaffolds which mimic the behavior of host tissue as properly as possible. Biodegradability, agreeable feasibility of cell growth, and migration parallel to mechanical properties, such as strength and energy absorption, have to be considered in design procedure. In order to study the effect of internal architecture on the plastic deformation and failure pattern, the architecture of triply periodic minimal surfaces which have been observed in nature were used. P and D surfaces at 30% and 60% of volume fractions were modeled with 3∗3∗ 3 unit cells and imported to Objet EDEN 260 3-D printer. Models were printed by VeroBlue FullCure 840 photopolymer resin. Mechanical compression test was performed to investigate the compressive behavior of scaffolds. Deformation procedure and stress-strain curves were simulated by FEA and exhibited good agreement with the experimental observation. Current approaches for predicting dominant deformation mode under compression containing Maxwell's criteria and scaling laws were also investigated to achieve an understanding of the relationships between deformation pattern and mechanical properties of porous structures. It was observed that effect of stress concentration in TPMS-based scaffolds resultant by heterogeneous mass distribution, particularly at lower volume fractions, led to a different behavior from that of typical cellular materials. As a result, although more parameters are considered for determining dominant deformation in scaling laws, two mentioned approaches could not exclusively be used to compare the mechanical response of cellular materials at the same volume fraction.


Assuntos
Plásticos , Alicerces Teciduais , Modelos Teóricos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...