Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Robot ; 9(91): eadk3925, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865475

RESUMO

Electrotactile stimulus is a form of sensory substitution in which an electrical signal is perceived as a mechanical sensation. The electrotactile effect could, in principle, recapitulate a range of tactile experience by selective activation of nerve endings. However, the method has been plagued by inconsistency, galvanic reactions, pain and desensitization, and unwanted stimulation of nontactile nerves. Here, we describe how a soft conductive block copolymer, a stretchable layout, and concentric electrodes, along with psychophysical thresholding, can circumvent these shortcomings. These purpose-designed materials, device layouts, and calibration techniques make it possible to generate accurate and reproducible sensations across a cohort of 10 human participants and to do so at ultralow currents (≥6 microamperes) without pain or desensitization. This material, form factor, and psychophysical approach could be useful for haptic devices and as a tool for activation of the peripheral nervous system.


Assuntos
Elastômeros , Condutividade Elétrica , Psicofísica , Tato , Humanos , Tato/fisiologia , Adulto , Feminino , Masculino , Desenho de Equipamento , Estimulação Elétrica , Adulto Jovem , Polímeros , Eletrodos , Calibragem , Percepção do Tato/fisiologia
2.
JMIR Cancer ; 10: e47359, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416544

RESUMO

BACKGROUND: Frequent sensor-assisted monitoring of changes in swallowing function may help improve detection of radiation-associated dysphagia before it becomes permanent. While our group has prototyped an epidermal strain/surface electromyography sensor that can detect minute changes in swallowing muscle movement, it is unknown whether patients with head and neck cancer would be willing to wear such a device at home after radiation for several months. OBJECTIVE: We iteratively assessed patients' design preferences and perceived barriers to long-term use of the prototype sensor. METHODS: In study 1 (questionnaire only), survivors of pharyngeal cancer who were 3-5 years post treatment and part of a larger prospective study were asked their design preferences for a hypothetical throat sensor and rated their willingness to use the sensor at home during the first year after radiation. In studies 2 and 3 (iterative user testing), patients with and survivors of head and neck cancer attending visits at MD Anderson's Head and Neck Cancer Center were recruited for two rounds of on-throat testing with prototype sensors while completing a series of swallowing tasks. Afterward, participants were asked about their willingness to use the sensor during the first year post radiation. In study 2, patients also rated the sensor's ease of use and comfort, whereas in study 3, preferences were elicited regarding haptic feedback. RESULTS: The majority of respondents in study 1 (116/138, 84%) were willing to wear the sensor 9 months after radiation, and participant willingness rates were similar in studies 2 (10/14, 71.4%) and 3 (12/14, 85.7%). The most prevalent reasons for participants' unwillingness to wear the sensor were 9 months being excessive, unwanted increase in responsibility, and feeling self-conscious. Across all three studies, the sensor's ability to detect developing dysphagia increased willingness the most compared to its appearance and ability to increase adherence to preventive speech pathology exercises. Direct haptic signaling was also rated highly, especially to indicate correct sensor placement and swallowing exercise performance. CONCLUSIONS: Patients and survivors were receptive to the idea of wearing a personalized risk sensor for an extended period during the first year after radiation, although this may have been limited to well-educated non-Hispanic participants. A significant minority of patients expressed concern with various aspects of the sensor's burden and its appearance. TRIAL REGISTRATION: ClinicalTrials.gov NCT03010150; https://clinicaltrials.gov/study/NCT03010150.

3.
Science ; 378(6625): 1174-1175, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520887

RESUMO

Stretchable conductors expand the interfaces with biological structures.


Assuntos
Materiais Biocompatíveis , Elastômeros , Eletrônica
4.
Adv Mater Technol ; 5(6)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32905479

RESUMO

This paper describes a type of haptic device that delivers two modes of stimulation simultaneously and at the same locations on the skin. The two modes of stimulation are mechanical (delivered pneumatically by inflatable air pockets embedded within a silicone elastomer) and electrical (delivered by a conductive polymer). The key enabling aspect of this work is the use of a highly plasticized conductive polymer based on poly(3,4-ethylenedioxythiphene) (PEDOT) blended with elastomeric polyurethane (PU). To fabricate the "electropneumotactile" device, the polymeric electrodes are overlaid directly on top of the elastomeric pneumatic actuator pockets. Co-placement of the pneumatic actuators and the electrotactile electrodes is enabled by the stretchability of the PEDOT:OTs/PU blend, allowing the electrotactiles to conform to underlying pneumatic pockets under deformation. The blend of PEDOT and PU has a Young's modulus of ~150 MPa with little degradation in conductivity following repeated inflation of the air pockets. The ability to perceive simultaneous delivery of two sensations to the same location on the skin are supported by experiments using human subjects. These results show that participants can successfully detect the location of pneumatic stimulation and whether electrotactile stimulation is delivered (yes/no) at a rate significantly above chance (mean accuracy = 94%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...