Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 83(4): 044702, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22559560

RESUMO

Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications.

2.
Nucl Instrum Methods Phys Res A ; 633(S1): S255-S258, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21918588

RESUMO

Imaging microchannel plate (MCP) detectors with cross strip (XS) readout anodes require centroiding algorithms to determine the location of the amplified charge cloud from the incident radiation, be it photon or particle. We have developed a massively parallel XS readout electronic system that employs an amplifier and ADC for each strip and uses this digital data to calculate the centroid of each event in real time using a field programmable gate array (FPGA). Doing the calculations in real time in the front end electronics using an FPGA enables a much higher input event rate, nearly two orders of magnitude faster, by avoiding the bandwidth limitations of the raw data transfer to a computer. We report on our detailed efforts to optimize the algorithms used on both an 18 mm and 40 mm diameter XS MCP detector with strip pitch of 640 microns and read out with multiple 32 channel "Preshape32" ASIC amplifiers (developed at Rutherford Appleton Laboratory). Each strip electrode is continuously digitized to 12 bits at 50 MHz with all 64 digital channels (128 for the 40 mm detector) transferred to a Xilinx Virtex 5 FPGA. We describe how events are detected in the continuous data stream and then multiplexed into firmware modules that spatially and temporally filter and weight the input after applying offset and gain corrections. We will contrast a windowed "center of gravity" algorithm to a convolution with a special centroiding kernel in terms of resolution and distortion and show results with < 20 microns FWHM resolution at input rates > 1 MHz.

3.
IEEE Trans Nucl Sci ; 56(3): 1148-1152, 2009 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-20174482

RESUMO

A number of modern experiments require simultaneous measurement of charges on multiple channels at > MHz event rates with an accuracy of 100-1000 e(-) rms. One widely used data processing scheme relies on application of specific integrated circuits enabling multichannel analog peak detection asserted by an external trigger followed by a serial/sparsified readout. Although this configuration minimizes the back end electronics, its counting rate capability is limited by the speed of the serial readout. Recent advances in analog to digital converters and FPGA devices enable fully parallel high speed multichannel data processing with digital peak detection enhanced by finite impulse response filtering. Not only can accurate charge values be obtained at high event rates, but the timing of the event on each channel can also be determined with high accuracy.We present the concept and first experimental tests of fully parallel 128-channel charge sensitive data processing electronics capable of measuring charges with accuracy of ~1000 e- rms. Our system does not require an external trigger and, in addition to charge values, it provides the event timing with an accuracy of ~1 ns FWHM. One of the possible applications of this system is high resolution position sensitive event counting detectors with microchannel plates combined with cross strip readout. Implementation of fast data acquisition electronics increases the counting rates of those detectors to multi-MHz level, preserving their unique capability of virtually noiseless detection of both position (with accuracy of ~10 µm FWHM) and timing (~1 ns FWHM) of individual particles, including photons, electrons, ions, neutrals, and neutrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...