Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459407

RESUMO

Epidermolysis bullosa (EB) is a group of rare genetic skin fragility disorders, which are hereditary. These disorders are associated with mutations in at least 16 genes that encode components of the epidermal adhesion complex. Currently, there are no effective treatments for this disorder. All current treatment approaches focus on topical treatments to prevent complications and infections. In recent years, significant progress has been achieved in the treatment of the severe genetic skin blistering condition known as EB through preclinical and clinical advancements. Promising developments have emerged in the areas of protein and cell therapies, such as allogeneic stem cell transplantation; in addition, RNA-based therapies and gene therapy approaches have also become a reality. Stem cells obtained from embryonic or adult tissues, including the skin, are undifferentiated cells with the ability to generate, maintain, and replace fully developed cells and tissues. Recent advancements in preclinical and clinical research have significantly enhanced stem cell therapy, presenting a promising treatment option for various diseases that are not effectively addressed by current medical treatments. Different types of stem cells such as primarily hematopoietic and mesenchymal, obtained from the patient or from a donor, have been utilized to treat severe forms of diseases, each with some beneficial effects. In addition, extensive research has shown that gene transfer methods targeting allogeneic and autologous epidermal stem cells to replace or correct the defective gene are promising. These methods can regenerate and restore the adhesion of primary keratinocytes in EB patients. The long-term treatment of skin lesions in a small number of patients has shown promising results through the transplantation of skin grafts produced from gene-corrected autologous epidermal stem cells. This article attempts to summarize the current situation, potential development prospects, and some of the challenges related to the cell therapy approach for EB treatment.

2.
Clin Chim Acta ; 552: 117676, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007056

RESUMO

Lung cancer has been one of the leading causes of death over the past century. Unfortunately, the reliance on conventional methods to diagnose the phenotypic properties of tumors hinders early-stage cancer diagnosis. However, recent advancements in identifying disease-specific nucleotide biomarkers, particularly microRNAs, have brought us closer to early-stage detection. The roles of miR-155, miR-197, and miR-182 have been established in stage I lung cancer. Recent progress in synthesizing nanomaterials with higher conductivity has enhanced the diagnostic sensitivity of electrochemical biosensors, which can detect low concentrations of targeted biomarkers. Therefore, this review article focuses on exploring electrochemical biosensors based on microRNA in lung cancer.


Assuntos
Técnicas Biossensoriais , Neoplasias Pulmonares , MicroRNAs , Nanoestruturas , Humanos , MicroRNAs/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Biomarcadores Tumorais/genética , Técnicas Eletroquímicas
3.
Environ Res ; 237(Pt 2): 117084, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683792

RESUMO

The most important reason for death from ovarian cancer is the late diagnosis of this disease. The standard treatment of ovarian cancer includes surgery and chemotherapy based on platinum, which is associated with side effects for the body. Due to the nonspecific nature of clinical symptoms, developing a platform for early detection of this disease is needed. In recent decades, the advancements of microfluidic devices and systems have provided several advantages for diagnosing ovarian cancer. Designing and manufacturing new platforms using specialized technologies can be a big step toward improving the prevention, diagnosis, and treatment of this group of diseases. Organ-on-a-chip microfluidic devices are increasingly used as a promising platform in cancer research, with a focus on specific biological aspects of the disease. This review focusing on ovarian cancer and microfluidic application technologies in its diagnosis. Additionally, it discusses microfluidic platforms and their potential future perspectives in advancing ovarian cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...