Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(1): 806-818, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29256589

RESUMO

Samarium-doped ceria (SDC) carbonate has become an attractive electrolyte for fuel cells because of its remarkable ion conductivity and high performance. Different doped ceria-carbonate (single-carbonate SDC, binary-carbonate SDC, and ternary-carbonate SDC) electrolytes were synthesized by the coprecipitation/oxalate method, to optimize the electrochemical performance. The structure; morphology; and thermal, optical, and surface properties have been studied using a variety of techniques. The X-ray diffraction results confirmed the successful incorporation of samarium into ceria as a crystalline structure and inclusion of carbonate, which is amorphous in nature. To analyze the conduction mechanism, direct current conductivity was measured in a H2/O2 atmosphere. Doped ceria-binary carbonate ((Li/Na)CO3-SDC) showed the best conductivity of 0.31 S cm-1 and power density of 617 mW cm-2, at 600 °C. The enhancement in the ionic conductivity and performance of the composites is due to the contribution of hybrid ions (O2-, H+). The crystallite size of the composites was in the range 21-41 nm. For the calculation of band gaps, optical absorption spectra of the synthesized powders were analyzed, and they showed a red shift with the band gap energy in the range 2.6-3.01 eV, when compared to that of pure ceria (3.20 eV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA