Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Signal Behav ; 16(7): 1915590, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938393

RESUMO

Plant growth and development is dependent on the regulation of classes of microRNAs (miRNAs) that have emerged as important gene regulators. These miRNAs can regulate plant gene expression to function. They play an important roles in biological homeostasis and environmental response controls. A wide range of plant biological and metabolic processes, including developmental timing, tissues specific development, and differentiation, depends on miRNAs. They perpetually regulate secondary metabolite functions in different plant family lines. Mapping of molecular phylogenies shows the distribution of secondary metabolism in the plant territory. More importantly, a lot of information related to miRNA regulatory processes in plants is revealed, but the role of miRNAs in secondary metabolism regulation and functions of the metabolites are still unclear. In this review, we pinnacle some potential miRNAs regulating the secondary metabolite biosynthesis activities in plants. This will provide an alternative knowledge for functional studies of secondary metabolism.


Assuntos
MicroRNAs/fisiologia , Plantas/metabolismo , RNA de Plantas/fisiologia , Metabolismo Secundário/genética , Plantas/genética
2.
BMC Genomics ; 21(1): 383, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493214

RESUMO

BACKGROUND: Lysine succinylation, an important protein posttranslational modification (PTM), is widespread and conservative. The regulatory functions of succinylation in leaf color has been reported. The chimeric leaves of Ananas comosus var. bracteatus are composed of normal green parts and albino white parts. However, the extent and function of lysine succinylation in chimeric leaves of Ananas comosus var. bracteatus has yet to be investigated. RESULTS: Compared to the green (Gr) parts, the global succinylation level was increased in the white (Wh) parts of chimeric leaves according to the Western blot and immunohistochemistry analysis. Furthermore, we quantitated the change in the succinylation profiles between the Wh and Gr parts of chimeric leaves using label-free LFQ intensity. In total, 855 succinylated sites in 335 proteins were identified, and 593 succinylated sites in 237 proteins were quantified. Compared to the Gr parts, 232 (61.1%) sites in 128 proteins were quantified as upregulated targets, and 148 (38.9%) sites in 70 proteins were quantified as downregulated targets in the Wh parts of chimeric leaves using a 1.5-fold threshold (P < 0.05). These proteins with altered succinylation level were mainly involved in crassulacean acid metabolism (CAM) photosynthesis, photorespiration, glycolysis, the citric acid cycle (CAC) and pyruvate metabolism. CONCLUSIONS: Our results suggested that the changed succinylation level in proteins might function in the main energy metabolism pathways-photosynthesis and respiration. Succinylation might provide a significant effect in the growth of chimeric leaves and the relationship between the Wh and Gr parts of chimeric leaves. This study not only provided a basis for further characterization on the function of succinylated proteins in chimeric leaves of Ananas comosus var. bracteatus but also provided a new insight into molecular breeding for leaf color chimera.


Assuntos
Ananas/metabolismo , Lisina/metabolismo , Proteínas de Plantas/metabolismo , Ácido Succínico/metabolismo , Quimera/metabolismo , Cromatografia Líquida , Cor , Regulação da Expressão Gênica de Plantas , Glicólise , Lisina/química , Fotossíntese , Folhas de Planta , Processamento de Proteína Pós-Traducional , Proteômica , Espectrometria de Massas em Tandem
3.
PLoS One ; 14(11): e0225602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31756232

RESUMO

Long noncoding RNAs (lncRNAs) have been reported to play key regulatory roles in plant growth, development, and biotic and abiotic stress physiology. Revealing the mechanism of lncRNA regulation in the albino portions of leaves is important for understanding the development of chimeric leaves in Ananas comosus var. bracteatus. In this study, a total of 3,543 candidate lncRNAs were identified, among which 1,451 were differentially expressed between completely green (CGr) and completely white (CWh) leaves. LncRNAs tend to have shorter transcripts, lower expression levels, and greater expression specificity than protein-coding genes. Predicted lncRNA targets were functionally annotated by the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A lncRNA-mRNA interaction network was constructed, and 36 target mRNAs related to chlorophyll metabolism were predicted to interact with 86 lncRNAs. Among these, 25 significantly differentially expressed lncRNAs putatively interacted with 16 target mRNAs. Based on an expression pattern analysis of the lncRNAs and their target mRNAs, the lncRNAs targeting magnesium chelatase subunit H (ChlH), protochlorophyllide oxidoreductase (POR), and heme o synthase (COX10) were suggested as key regulators of chlorophyll metabolism. This study provides the first lncRNA database for A. comosus var. bracteatus and contributes greatly to understanding the mechanism of epigenetic regulation of leaf albinism.


Assuntos
Ananas/genética , RNA Longo não Codificante/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Ontologia Genética , Liases/genética , Liases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo
4.
PeerJ ; 7: e7261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333908

RESUMO

BACKGROUND: Ananas comosus var. bracteatus has high ornamental value due to its chimeric leaves. However, the chimeric trait is very unstable in red pineapple plants, and transcriptional variation between the two types of cells (white/green cells) and the molecular mechanism responsible for their albino phenotype remain poorly understood. METHODS: Comparative transcriptomic and proteomic analyses of the white parts (Whs) and green parts (Grs) of chimeric leaves were performed. RESULTS: In total, 1,685 differentially expressed genes (DEGs) (712 upregulated and 973 downregulated) and 1,813 differentially abundant proteins (DAPs) (1,018 with low abundance and 795 with high abundance) were identified. Based on Gene Ontology (Go) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the DEGs were mostly involved in carbon fixation in photosynthetic organisms, porphyrin and chlorophyll metabolism and oxidative phosphorylation, while proteomic analysis revealed that DAPs were mostly related to ribosomes, photosynthesis, photosynthesis antennas, and porphyrin and chlorophyll metabolism. Combined analysis showed increased mRNA levels but low abundance of nine proteins level in Whs /Grs related to photosynthetic pigment and photosynthesis. Transcriptional changes, posttranscriptional regulation and translational alterations of key enzymes involved in chlorophyll biosynthesis and photosynthesis may play important roles in the albino parts of chimeric leaves.

5.
J Phys Chem B ; 118(31): 9486-95, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-25025303

RESUMO

Polyamide 6/SiO2 (PA6/SiO2) nanocomposites with varying amounts of SiO2 were prepared by using a novel sol-gel technique. These nanocomposites were formed in situ by hydrolysis and through the condensation of tetraethoxysilane (TEOS) using formic acid with a small amount of water as the solvent for PA6. Observations of TGA showed that the thermal stability of PA6 nanocomposite was significantly improved compared to that of neat PA6. Microstructure development during the thermally induced crystallization of PA6/SiO2 nanocomposites was investigated with a combination of differential scanning calorimetry (DSC), FTIR spectroscopy, scanning electron microscopy (SEM), and AFM. FTIR spectroscopy was used to determine the crystal form of these nanocomposites, and it was concluded that SiO2 nanoparticles have the γ-nucleating effect. The crystallinity of nanocomposites decreased with increasing TEOS loading as compared to that for neat PA6. SEM showed a very fine dispersion of nanoscale silica whereas SEM and Zetasizer proved the silica particle size was about 100-200 nm. The isothermal crystallization kinetics of these nanocomposites with increasing SiO2 content were investigated, and it was shown that the amount of SiO2 plays a significant role in crystallization kinetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...