Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 354: 127180, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35439560

RESUMO

Biological methanation is a promising technology for gas and carbon valorisation. Therefore, process stability is required to allow its scale up and development. A pilot scale bubble column reactor was used for ex situ biological methanation with Mixed Microbial Culture (MMC). A 16S rRNA high throughput sequencing analysis revealed the MMC reached a stable composition with 50-60% Methanobacterium in closed liquid mode, a robust genus adapted to large scale constraints. Class MBA03 was identified as an indicator of process stability. Methanogenic genera moved toward 50% of Methanothermobacter when intensifying the process, and proteolytic activity was identified while 94% of H2/CO2 was converted into methane at 4NL.L-1.d-1. This study gives clarifications on the origin of volatile fatty acids (VFA) apparitions. Acetate and propionate accumulated when methanogenic activity weakened due to nutritive deficiency, and when PH2 reached 0.7 bar. The MMC withstood a storage period of 34d at room temperature indicating its suitability for industrial constraints.


Assuntos
Dióxido de Carbono , Euryarchaeota , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Euryarchaeota/genética , Hidrogênio , Metano , RNA Ribossômico 16S/genética
2.
Nat Commun ; 6: 6283, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25704114

RESUMO

Knowledge of the behaviour of bacterial communities is crucial for understanding biogeochemical cycles and developing environmental biotechnology. Here we demonstrate the formation of an artificial consortium between two anaerobic bacteria, Clostridium acetobutylicum (Gram-positive) and Desulfovibrio vulgaris Hildenborough (Gram-negative, sulfate-reducing) in which physical interactions between the two partners induce emergent properties. Molecular and cellular approaches show that tight cell-cell interactions are associated with an exchange of molecules, including proteins, which allows the growth of one partner (D. vulgaris) in spite of the shortage of nutrients. This physical interaction induces changes in expression of two genes encoding enzymes at the pyruvate crossroads, with concomitant changes in the distribution of metabolic fluxes, and allows a substantial increase in hydrogen production without requiring genetic engineering. The stress induced by the shortage of nutrients of D. vulgaris appears to trigger the interaction.


Assuntos
Clostridium acetobutylicum/fisiologia , Desulfovibrio vulgaris/fisiologia , Interações Microbianas , Técnicas de Cocultura , Hidrogênio/metabolismo , Estresse Fisiológico
3.
J Environ Manage ; 132: 32-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24275342

RESUMO

After closure of a waste disposal cell in a repository for radioactive waste, resaturation is likely to cause the release of soluble species contained in cement and bituminous matrices, such as ionic species (nitrates, sulfates, calcium and alkaline ions, etc.), organic matter (mainly organic acids), or gases (from steel containers and reinforced concrete structures as well as from radiolysis within the waste packages). However, in the presence of nitrates in the near-field of waste, the waste cell can initiate oxidative conditions leading to enhanced mobility of redox-sensitive radionuclides (RN). In biotic conditions and in the presence of organic matter and/or hydrogen as electron donors, nitrates may be microbiologically reduced, allowing a return to reducing conditions that promote the safety of storage. Our work aims to analyze the possible microbial reactivity of nitrates at the bitumen - concrete interface in conditions as close as possible to radioactive waste storage conditions in order (i) to evaluate the nitrate reaction kinetics; (ii) to identify the by-products (NO2(-), NH4(+), N2, N2O, etc.); and (iii) to discriminate between the roles of planktonic bacteria and those adhering as a biofilm structure in the denitrifying activity. Leaching experiments on solid matrices (bitumen and cement pastes) were first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface, e.g. highly alkaline pH conditions (10 < pH < 11) imposed by the cement matrix. The screening of a range of anaerobic denitrifying bacterial strains led us to select Halomonas desiderata as a model bacterium capable of catalyzing the reaction of nitrate reduction in these particular conditions of pH. The denitrifying activity of H. desiderata was quantified in a batch bioreactor in the presence of solid matrices and/or leachate from bitumen and cement matrices. Denitrification was relatively fast in the presence of cement matrix (<100 h) and 2-3 times slower in the presence of bituminous matrix (pH 9.7). The maximal rate of denitrification was approximately 0.063 mM h(-1) and some traces of nitrite were detected for a few hours (<2%). Overall, the presence of solid cement promoted the kinetics of denitrification. The inspection of the solid surfaces at the end of the experiment revealed the presence of a biofilm of H. desiderata on the cement paste surface. These attached bacteria showed a comparable denitrifying activity to planktonic bacterial culture. However, no colonization of bitumen was observed either by SEM or by epifluorescence microscopy.


Assuntos
Halomonas/crescimento & desenvolvimento , Halomonas/metabolismo , Nitratos/metabolismo , Resíduos Radioativos/prevenção & controle , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Disponibilidade Biológica , Desnitrificação , Concentração de Íons de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...