Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(26): 23664-23672, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426264

RESUMO

Nanofiber membranes were successfully synthesized from expanded polystyrene (EPS) waste with the addition of poly(vinylpyrrolidone) (PVP) for water microfiltration using the electrospinning method. The EPS-based nanofiber membranes exhibited a smooth morphology and were uniform in size. The concentration of the EPS/PVP solution changed some of the physical parameters of the nanofiber membrane, such as viscosity, conductivity, and surface tension. Greater viscosity and surface tension increase the nanofiber membrane diameter, whereas the addition of PVP results in hydrophilicity. Additionally, increasing the pressure increased the flux value of each variation of the nanofiber membranes. Furthermore, the rejection value was 99.99% for all variations. Finally, the use of EPS waste for nanofiber membranes is also beneficial for decreasing the amount of EPS waste in the environment and is an alternative to the current membranes available in the market for water filtration applications.

2.
RSC Adv ; 12(52): 33751-33760, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505690

RESUMO

Acrylonitrile butadiene styrene (ABS) is one of the most common fused-filament feedstocks for 3D printing. The rapid growth of the 3D printing industry has resulted in huge demand for ABS filaments; however, it generates a large amount of waste. This study developed a novel method using waste ABS to fabricate electrospun nanofiber membranes (ENMs) for water filtration. Polyvinylpyrrolidone (PVP) was employed to modify the properties of waste ABS, and the effect of PVP addition in the range of 0-5 wt% was investigated. The results showed that adding PVP increased the viscosity and surface tension but decreased the conductivity of the precursor solution. After electrospinning, PVP could reduce the number of beads, increase the porosity and fiber diameter, and improve the wettability of the fabricated fibers. Moreover, the bilayer of ABS ENMs achieved a high flux value between 2951 and 48 041 L m-2 h-1 and a high rejection rate of 99%. Our study demonstrates a sustainable strategy to convert waste plastics to inexpensive materials for wastewater treatment membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...