Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(25): 14411-14418, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38875496

RESUMO

Headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME-GC-MS) offers an alternative analysis method for isoeugenol (an active ingredient in fish sedatives) that avoids the use of organic solvents, simplifies sample preparation, and can be fully automated. This work focuses on developing and evaluating an HS-SPME-GC-MS method for isoeugenol in aquaculture samples and testing the stability of isoeugenol itself. Because of isoeugenol's relatively low volatility, more polar SPME fiber coatings (polyacrylate and polydimethylsiloxane/divinylbenzene) had better performance and the headspace extractions took over 30 min to reach equilibrium. Additionally, it was found that isoeugenol was relatively unstable compared to a deuterated standard (d3-eugenol) in the presence of water. To address this, after the fish samples were homogenized with water, they were heated at 50 °C for 1 h prior to analysis for equilibration. By using the method developed in this work, isoeugenol's detection limits in multiple aquaculture matrices (shrimp, tilapia, and salmon) were in the low ng/g range (<15 ng/g), well below the target testing level (200 ng/g). Additionally, by adding d3-eugenol as an internal standard, excellent linearity (R2 > 0.98), accuracy (97-99% recoveries), and precision (5-13% RSDs) were all achieved.


Assuntos
Aquicultura , Eugenol , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Tilápia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Animais , Eugenol/análogos & derivados , Eugenol/química , Eugenol/análise , Peixes , Alimentos Marinhos/análise , Contaminação de Alimentos/análise
2.
J Agric Food Chem ; 72(27): 15366-15375, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38932744

RESUMO

Antibiotic residues may be present in fruit products from trees that were treated to combat bacterial diseases such as citrus greening or blight. A liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method was developed for the simultaneous determination and identification of streptomycin, kasugamycin, penicillin, and oxytetracycline residues in fruit. Samples were extracted with acidic methanol and separation was optimized for a hydrophilic interaction LC column. A Q-Exactive HRMS instrument was used to obtain product ion spectra for analyte identification. Quantitation was performed with matrix-extracted calibration curves and internal standard correction. The method was tested on many different types of fruit. In general, fortified samples demonstrated acceptable recoveries (82-116%) and reproducibility (<15% RSD). Method detection limits for these analytes were well below the established US EPA tolerance levels. It was also possible to analyze the fruit extracts prepared using this method for additional chemical contaminants using LC-HRMS.


Assuntos
Antibacterianos , Resíduos de Drogas , Contaminação de Alimentos , Frutas , Espectrometria de Massas , Frutas/química , Antibacterianos/análise , Antibacterianos/química , Resíduos de Drogas/análise , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos
3.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234747

RESUMO

Parallel extraction of headspace volatiles from multiwell plates using sorbent sheets (HS-SPMESH) followed by direct analysis in real-time high-resolution mass spectrometry (DART-HRMS) can be used as a rapid alternative to solid-phase micro-extraction (SPME) gas-chromatography mass-spectrometry (GC-MS) for trace level volatile analyses. However, an earlier validation study of SPMESH-DART-MS using 3-isobutyl-2-methoxypyrazine (IBMP) in grape juice showed poor correlation between SPMESH-DART-MS and a gold standard SPME-GC-MS around the compound's odor detection threshold (<10 ng/kg) in grape juice, and lacked sufficient sensitivity to detect IBMP at this concentration in grape homogenate. In this work, we report on the development and validation of an improved SPMESH extraction approach that lowers the limit of detection (LOD < 0.5 ng/kg), and regulates crosstalk between wells (<0.5%) over a calibration range of 0.5−100 ng/kg. The optimized SPMESH-DART-MS method was validated using Cabernet Sauvignon and Merlot grape samples harvested from commercial vineyards in the central valley of California (n = 302) and achieved good correlation and agreement with SPME-GC-MS (R2 = 0.84) over the native range of IBMP (<0.5−20 ng/kg). Coupling of SPMESH to a lower resolution triple quadrupole (QqQ)-MS via a new JumpShot-HTS DART source also achieved low ng/kg detection limits, and throughput was improved through positioning stage optimizations which reduced time spent on intra-well SPMESH areas.


Assuntos
Vitis , Cromatografia Gasosa-Espectrometria de Massas/métodos , Pirazinas/análise , Microextração em Fase Sólida/métodos , Vitis/química
4.
J Agric Food Chem ; 70(25): 7805-7814, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699964

RESUMO

Quantitative and qualitative measurements of trace-level analytes in plants or foodstuffs, e.g., secondary metabolites like carotenoids, are often performed at centralized core facilities or off-site laboratories. However, preparation, storage, and/or transport of both intact samples and sample extracts may be cumbersome and complicated, especially for air-sensitive analytes. We describe the development of inexpensive swellable microextraction (SweME) devices for extraction and storage of nonpolar analytes. SweME devices consist of a thin layer of poly(dimethylsiloxane) (PDMS) grafted onto a stainless steel support. Pretreating the SweME device with small volumes of the organic solvent causes the PDMS to swell. The swollen SweME device can then be immersed directly into complex matrices for absorptive extraction of low-molecular-weight, nonpolar analytes. Following storage, analytes can be solvent-desorbed prior to characterization. Proof-of-principle work with carotenoids from tomatoes and carrots demonstrates that SweME is appropriate for semiquantitative analyses and increases the stability of air-sensitive analytes during storage at ambient temperatures as compared to the solvent extracts. Carotenoid profiles (fractional carotenoid contributions) from tomato and carrot samples were well correlated between SweME and liquid-liquid extraction (R2 = 0.97 and 0.94). Lycopene, the most abundant carotenoid in tomatoes, saw a less than 20% decrease in extracted mass during 1 month of ambient SweME storage. Extractions and desorptions can be run in parallel using multiwell plates. In summary, swelled sorbent extraction with SweME devices is a convenient and inexpensive approach for isolation and storage of analytes in complex matrices and may be particularly well suited for evaluating large numbers of plant samples through external laboratories.


Assuntos
Carotenoides , Extração Líquido-Líquido , Solventes
5.
J Agric Food Chem ; 69(41): 12344-12353, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618472

RESUMO

Poly(dimethylsiloxane)-based thin-film sorbent sheets (SPMESH) have previously been used for parallel headspace (HS) extraction prior to direct analysis in real-time mass spectrometry (DART-MS) for rapid quantitation of odorants in complex matrices. However, HS-SPMESH extraction is poorly suited for less volatile odorants, e.g., volatile phenols. This report describes modifications to the previous SPMESH extraction device, which make it amenable to parallel extraction of low-volatility analytes from multiwell plates under direct immersion (DI) conditions. Optimization and validation of the DI-SPMESH-DART-MS approach were performed on four volatile phenols (4-ethylphenol, 4-ethylguaiacol, 4-methylguaiacol, and guaiacol) of relevance to the quality of grape juices. Negative-ion mode DART-MS spectra showed a series of oxygenated adducts [M + nO - H]- for all analytes, but isobaric interferences could be limited for three of the four analytes by selecting an appropriate MS/MS transition. Signal suppression from nonvolatiles (sugars, acids) could be overcome by a rinse step. DI-SPMESH-DART-MS analysis of 24 samples could be performed in ∼45 min (30 min extraction, 16 min DART analysis) with 0.5-3 µg/L detection limits in aqueous and model juice solutions. In real grape juices (n = 5 cultivars), good accuracy (72-137%) could be achieved for two of the four volatile phenols initially investigated, 4-ethylphenol and 4-ethylguaiacol. However, poor accuracy was observed for guaiacol in some cultivars, and 4-methylguaiacol could not be quantitated due to interferences with other volatile phenols. Despite these limitations, DI-SPMESH-DART-MS/MS may be useful for prescreening a large number of samples prior to more selective conventional analyses.


Assuntos
Vitis , Sucos de Frutas e Vegetais , Odorantes , Fenóis/análise , Espectrometria de Massas em Tandem
6.
J Agric Food Chem ; 67(50): 13840-13847, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30945545

RESUMO

The use of headspace thin-film microextraction devices (SPMESH) for parallel extraction of trace-level volatiles prior to direct analysis in real-time mass spectrometry (DART-MS) has been reported previously, in which volatiles were extracted from samples in multi-well plates. In this report, we demonstrate that headspace extraction of volatiles by SPMESH sheets can be performed directly from planar surfaces. When coupled with DART-MS, this approach yields volatile mass spectral images with at least 4 mm resolution. When samples were spotted onto general-purpose silica gel thin-layer chromatography (TLC) plates, the SPMESH extraction could reach equilibrium within 2-4 min and 48 samples could be extracted and analyzed in 14 min. Because volatilization of analytes from TLC plates was very rapid, SPMESH extraction was delayed by the addition of 5% polyethylene glycol. Good linearity was achieved in the microgram per liter to milligram per liter range for four odorants (3-isobutyl-2-methoxypyrazine, linalool, methyl anthranilate, and o-aminoacetophenone) in several matrices (water, 10% ethanol, juice, and grape macerate) using 5 µL sample sizes. Detection limits as low as 50 pg/spot (10 µg/L in grape macerate) could be achieved. In contrast to many reports on headspace solid-phase microextraction, negligible matrix effects were observed for ethanol and grape macerates compared to water. SPMESH can preserve volatile images from planar surfaces, and SPMESH-DART-MS from TLC plates is well-suited for rapid trace volatile analysis, especially with small sample sizes.


Assuntos
Cromatografia em Camada Fina/métodos , Microextração em Fase Sólida/métodos , Vitis/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/isolamento & purificação , Espectrometria de Massas/métodos
7.
Langmuir ; 33(37): 9280-9287, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28388079

RESUMO

The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb2O3, an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...