Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(2): 507-514, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32050810

RESUMO

Understanding the mechanism behind neuronal regeneration is critical for treating ischemic stroke and traumatic brain injury. The presence of neural stem cells in and around the sub-ventricular zone of human and also in zebrafish is evidenced. In this current study, the neuro-protective potential of nano-formulated hesperetin on injury-induced neurogenesis in zebrafish was assessed. Nanoformulation of hesperetin was prepared by anti-solvent precipitation technique using sodium dodecyl sulfate (SDS) as the stabilizing agent. The synthesized particles were characterized using SEM, DLS, XRD and FT-IR. Anti-oxidant capacity of nano hesperetin (nHST) in in vitro followed by in vivo studies in a traumatic brain injury (TBI) model of adult zebrafish (Danio rerio), catalase activity, histological analysis and gene expression studies for the genes Sox2, Nestin, Fabp7a and HuC were carried out. The synthesized particles were found to be in nanoscale and SDS had successfully integrated with hesperetin. Moreover, nHST had a significantly higher anti-oxidant capacity in vitro. Catalase levels in nHST treated group were significantly restored compared to other groups. Histological studies supported reduced tissue damage on oral administration of nano-hesperetin as compared to other groups. Gene expression studies showed that nano-hesperetin at a concentration of 10 µM when administered orally induced proliferation of neural stem cells without inducing cell death.


Assuntos
Lesões Encefálicas Traumáticas , Hesperidina , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Hesperidina/farmacologia , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...