Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36850423

RESUMO

Observing the curing reaction of epoxy resins is a key to quality assurance in fibre composite production. The evaluation of electrical impedance spectra is an established monitoring method. Such impedance spectra contain the physical effects of dipole relaxation, ionic conduction and electrode polarisation, which shift to lower frequencies as curing progresses. In the early stage of the curing reaction, ionic conductivity and electrode polarisation dominate, and in the later stage of the curing reaction, dipole relaxation dominates. Due to the shift of the effects over several frequency decades, it makes sense to evaluate electrical impedance spectra not exclusively at one frequency but over an entire available frequency spectrum. The measured spectral raw data cannot be easily interpreted by a control algorithm and have to be mapped to simpler key indicators. For this purpose, a frequency-dependent model is proposed to address the aforementioned physical effects. With only five free parameters, measured spectra can be described with a relative error of only 2.3%. The shift of the occurring effects to lower frequencies necessitates switching the key indicator used in the progression of the cure reaction.

2.
Materials (Basel) ; 16(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676333

RESUMO

Numerous synthetic techniques for the fabrication of porous metal electrodes were developed in recent decades. A very promising and facile route is the 3D printing of structures, which can be designed directly on the computer first. However, the current techniques allow structures to be printed with a resolution down to 20 µm, which is still quite rough regarding tuning the pore distribution and diameter of electrode materials for potential applications. For the first time, a laser-induced forward transfer (LIFT) process was used to 3D print metal voxels on a solid surface, resulting in a porous electrocatalytically active gold (Au) electrode film. Porous Au electrodes produced using LIFT showed an increase in the electrochemically active surface area (SA) by a factor of four compared with a sputtered dense Au film when characterized using cyclic voltammetry (CV) in Ar-saturated 0.1 M KOH. Therefore, the LIFT process can be considered very promising for the printing of ordered porous electrodes with high surface areas for electrochemical applications.

3.
Sensors (Basel) ; 22(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36236400

RESUMO

The ability to measure the degree of cure of epoxy resins is an important prerequisite for making manufacturing processes for fibre-reinforced plastics controllable. Since a number of physical properties change during the curing reaction of epoxy resins, a wide variety of measurement methods exist. In this article, different methods for cure monitoring of epoxy resins are applied to a room-temperature curing epoxy resin and then directly compared. The methods investigated include a structure-borne sound acoustic, a dielectric, an optical and a strain-based observation method, which for the first time are measured simultaneously on one and the same resin sample. In addition, the degree of cure is determined using a kinetic resin model based on temperature measurement data. The comparison shows that the methods have considerable but well-explainable differences in their sensitivity, interference immunity and repeatability. Some measurement methods are only sensitive before and around the gel point, while the strain-based measurement method only reacts to the curing from the gel point onwards. These differences have to be taken into account when implementing a cure monitoring system. For this reason, a multi-sensor node is suitable for component-integrated curing monitoring, measuring several physical properties of the epoxy resin simultaneously.


Assuntos
Resinas Epóxi
4.
Sensors (Basel) ; 21(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640795

RESUMO

Monitoring process parameters in the manufacture of composite structures is key to ensuring product quality and safety. Ideally, this can be done by sensors that are embedded during production and can remain as devices to monitor structural health. Extremely thin foil-based sensors weaken the finished workpiece very little. Under ideal conditions, the foil substrate bonds with the resin in the autoclaving process, as is the case when polyetherimide is used. Here, we present a temperature sensor as part of an 8 µm thick multi-sensor node foil for monitoring processing conditions during the production and structural health during the lifetime of a construction. A metallic thin film conductor was shaped in the form of a space-filling curve to suppress the influences of resistance changes due to strain, which could otherwise interfere with the measurement of the temperature. FEM simulations as well as experiments confirm that this type of sensor is completely insensitive to the direction of strain and sufficiently insensitive to the amount of strain, so that mechanical strains that can occur in the composite curing process practically do not interfere with the temperature measurement. The temperature sensor is combined with a capacitive sensor for curing monitoring based on impedance measurement and a half-bridge strain gauge sensor element. All three types are made of the same materials and are manufactured together in one process flow. This is the key to cost-effective distributed sensor arrays that can be embedded during production and remain in the workpiece, thus ensuring not only the quality of the initial product but also the operational reliability during the service life of light-weight composite constructions.


Assuntos
Polímeros , Sensação Térmica , Reprodutibilidade dos Testes , Temperatura
5.
Polymers (Basel) ; 13(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494260

RESUMO

The article presents a study on the adhesion of thermoplastic films to a room temperature-hardening epoxy resin, which deals with an important question on sensor integration into fibre composites. By means of a morphological box, a test specimen is developed, which allows to test strength values for the adhesion of thermoplastic films to epoxy resin. Polyimide (PI), which is typically used as a carrier material for flexible sensors, is compared with the thermoplastics polyetherimide (PEI), polyethersulfone (PES) and polyamide 6 (PA6). To evaluate the spatial formation of the interface, images taken with a light microscope, fluorescence microscope and electron microscope and an energy-dispersive X-ray spectroscopy (EDX) analysis are presented. The images show that during the curing process of the epoxy resin the initially expected pronounced interphase does not form. In this respect, it is surprising that PEI achieves such a high adhesion strength even without extended interphase formation, that the failure of the test specimen occurs in the epoxy resin region at a tensile stress of 70 MPa and not at the interface between epoxy and PEI, as might initially be assumed. It is also surprising that PES exhibits the lowest adhesion strength of 5 MPa to room temperature-hardening epoxy resin, although in previous investigations it was often used as a soluble toughness modifier for epoxy resins. The tensile adhesion strength of PI to epoxy resin was found at 27 MPa and the tensile adhesion strength of PA6 to epoxy resin was found at 13 MPa. For sensor integration, the findings mean that flexible sensors on PEI substrates promise a low tendency to delaminate even in the room temperature-hardening epoxy resin used, while the other materials tested indicate an increased tendency to delaminate.

6.
Micromachines (Basel) ; 10(4)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925719

RESUMO

Laser induced forward transfer (LIFT) is a flexible digital printing process for maskless, selective pattern transfer, which uses single laser pulses focused through a transparent carrier substrate onto a donor layer to eject a tiny volume of the donor material towards a receiver substrate. Here, we present an advanced method for the high-resolution micro printing of bio-active detection chemicals diluted in a viscous buffer solution by transferring droplets with precisely controllable volumes using blister-actuated LIFT (BA-LIFT). This variant of the LIFT process makes use of an intermediate polyimide layer partially ablated by the laser pulses. The expanding gaseous ablation products lead to blisters in the polyimide and ejection of droplets from the subjacent viscous solution layer. A relative movement of donor and receiver substrates for the transfer of partially overlapping pixels is realized with a custom-made positioning system. Using a specially developed donor ink containing bio-active components presented method allows to transfer droplets with well controllable volumes between 20 fL and 6 pL, which is far more precise than other methods like inkjet or contact printing. The usefulness of the process is demonstrated by locally functionalizing laser-structured nitrocellulose paper-like membranes to form a multiparametric lateral flow test. The recognition zones localized within parallel micro channels exhibit a well-defined and homogeneous color change free of coffee-ring patterns, which is of utmost importance for reliable optical readout in miniature multiparametric test systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...