Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 3421, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33564052

RESUMO

Skill increase in motor performance can be defined as explicitly measuring task success but also via more implicit measures of movement kinematics. Even though these measures are often related, there is evidence that they represent distinct concepts of learning. In the present study, the effect of multiple tDCS-sessions on both explicit and implicit measures of learning are investigated in a pointing task in 30 young adults (YA) between 27.07 ± 3.8 years and 30 old adults (OA) between 67.97 years ± 5.3 years. We hypothesized, that OA would show slower explicit skill learning indicated by higher movement times/lower accuracy and slower implicit learning indicated by higher spatial variability but profit more from anodal tDCS compared with YA. We found age-related differences in movement time but not in accuracy or spatial variability. TDCS did not skill learning facilitate learning neither in explicit nor implicit parameters. However, contrary to our hypotheses, we found tDCS-associated higher accuracy only in YA but not in spatial variability. Taken together, our data shows limited overlapping of tDCS effects in explicit and implicit skill parameters. Furthermore, it supports the assumption that tDCS is capable of producing a performance-enhancing brain state at least for explicit skill acquisition.

3.
eNeuro ; 7(5)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33055200

RESUMO

Physiological mirror activity (pMA), observed in healthy human adults, describes the involuntary co-activation of contralateral homologous muscles during unilateral limb movements. Here we provide novel evidence, using neuromuscular measurements (electromyography; EMG), that the amplitude of pMA can be voluntarily inhibited during unilateral isometric contractions of intrinsic hand muscles after informing human participants (10 male, 10 female) about its presence and establishing a basic understanding of pMA mechanisms through a standardized protocol. Importantly, significant suppression of pMA was observed immediately after participants were asked to inhibit it, despite the absence of any online feedback during task execution and without special training. Moreover, we observed that the decrease of pMA was specifically accompanied by an increase in relative frontal δ power recorded with electroencephalography (EEG). Correlation analysis further revealed an inverse association between the individual amplitude of pMA and frontal δ power that reached significance once participants started to inhibit. Taken together, these results suggest that δ power in frontal regions might reflect executive processes exerting inhibitory control over unintentional motor output, in this case pMA. Our results provide an initial reference point for the development of therapeutic applications related to the neurorehabilitation of involuntary movements which could be realized through the suppression of pMA observed in the elderly before it would fully manifest in undesirable overt movement patterns.


Assuntos
Mãos , Contração Isométrica , Adulto , Idoso , Eletroencefalografia , Eletromiografia , Feminino , Humanos , Masculino , Movimento , Músculo Esquelético
4.
Neuroimage ; 149: 233-243, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28159689

RESUMO

Computational anatomy studies typically use T1-weighted magnetic resonance imaging contrast to look at local differences in cortical thickness or grey matter volume across time or subjects. This type of analysis is a powerful and non-invasive tool to probe anatomical changes associated with neurodevelopment, aging, disease or experience-induced plasticity. However, these comparisons could suffer from biases arising from vascular and metabolic subject- or time-dependent differences. Differences in blood flow and volume could be caused by vasodilation or differences in vascular density, and result in a larger signal contribution of the blood compartment within grey matter voxels. Metabolic changes could lead to differences in dissolved oxygen in brain tissue, leading to T1 shortening. Here, we analyze T1 maps and T1-weighted images acquired during different breathing conditions (ambient air, hypercapnia (increased CO2) and hyperoxia (increased O2)) to evaluate the effect size that can be expected from changes in blood flow, volume and dissolved O2 concentration in computational anatomy studies. Results show that increased blood volume from vasodilation during hypercapnia is associated with an overestimation of cortical thickness (1.85%) and grey matter volume (3.32%), and that both changes in O2 concentration and blood volume lead to changes in the T1 value of tissue. These results should be taken into consideration when interpreting existing morphometry studies and in future study design. Furthermore, this study highlights the overlap in structural and physiological MRI, which are conventionally interpreted as two independent modalities.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
5.
Proc Natl Acad Sci U S A ; 98(21): 12255-60, 2001 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-11593042

RESUMO

We report experiments combining assessment of spatial tactile discrimination behavior and measurements of somatosensory-evoked potentials in human subjects before and after short-term plastic changes to demonstrate a causal link between the degree of altered performance and reorganization. Plastic changes were induced by a Hebbian coactivation protocol of simultaneous pairing of tactile stimuli. As a result of coactivation, spatial discrimination thresholds were lowered; however, the amount of discrimination improvement was variable across subjects. Analysis of somatosensory-evoked potentials revealed a significant, but also variable shift in the localization of the N20-dipole of the index finger that was coactivated. The Euclidean distance between the dipole pre- and post-coactivation was significantly larger on the coactivated side (mean 9.13 +/- 3.4 mm) than on the control side (mean 4.90 +/- 2.7 mm, P = 0.008). Changes of polar angles indicated a lateral and inferior shift on the postcentral gyrus of the left hemisphere representing the coactivated index finger. To explore how far the variability of improvement was reflected in the degree of reorganization, we correlated the perceptual changes with the N20-dipole shifts. We found that the changes in discrimination abilities could be predicted from the changes in dipole localization. Little gain in spatial discrimination was associated with small changes in dipole shifts. In contrast, subjects who showed a large cortical reorganization also had lowest thresholds. All changes were highly selective as no transfer to the index finger of the opposite, non-coactivated hand was found. Our results indicate that human spatial discrimination performance is subject to improvement on a short time scale by a Hebbian stimulation protocol without invoking training, attention, or reinforcement. Plastic processes related to the improvement were localized in primary somatosensory cortex and were scaled with the degree of the individual perceptual improvement.


Assuntos
Córtex Cerebral/fisiologia , Aprendizagem por Discriminação/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...