Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Inf Med ; 42(2): 126-33, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12743648

RESUMO

OBJECTIVES: Medical informatics, neuroinformatics and bioinformatics provide a wide spectrum of research. Here, we show the great potential of synergies between these research areas on the basis of four exemplary studies where techniques are transferred from one of the disciplines to the other. METHODS: Reviewing and analyzing exemplary and specific projects at the intersection of medical informatics, neuroinformatics, and bioinformatics from our experience in an interdisciplinary research group. RESULTS: Synergy emerges when techniques and solutions from medical informatics, bioinformatics, or neuroinformatics are successfully applied in one of the other disciplines. Synergy was found in 1. the modeling of neurophysiological systems for medical therapy development, 2. the use of image processing techniques from medical computer vision for the analysis of the dynamics of cell nuclei, and 3. the application of neuroinformatics tools for data mining in bioinformatics and as classifiers in clinical oncology. CONCLUSIONS: Each of the three different disciplines have delivered technologies that are readily applicable in the other disciplines. The mutual transfer of knowledge and techniques proved to increase efficiency and accuracy in a manifold of applications. In particular, we expect that clinical decision support systems based on techniques derived from neuro- and bioinformatics have the potential to improve medical diagnostics and will finally lead to a personalized delivery of healthcare.


Assuntos
Biologia Computacional , Informática Médica , Neurociências , Comportamento Cooperativo , Sistemas de Apoio a Decisões Clínicas , Alemanha , Humanos , Modelos Neurológicos
2.
Biol Cybern ; 73(3): 195-207, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7548309

RESUMO

We present a formal model of olfactory transduction corresponding to the biochemical reaction cascade found in chemosensory neurons. It assumes that odorants bind to receptor proteins which, in turn, activate transducer mechanisms corresponding to second messenger-mediated processes. The model is reformulated as a mathematically equivalent artificial neural network (ANN). To enable comparison of the computational power of our model, previously suggested models of chemosensory transduction are also presented in ANN versions. In ANNs, certain biological parameters, such as rate constants and affinities, are transformed into weights that can be fitted by training with a given experimental data set. After training, these weights do not necessarily equal the real biological parameters, but represent a set of values that is sufficient to simulate an experimental set of data. We used ANNs to simulate data recorded from bee subplacodes and compare the capacity of our model with ANN versions of other models. Receptor neurons of the nonpheromonal, general odor-processing subsystem of the honeybee are broadly tuned, have overlapping response spectra, and show highly nonlinear concentration dependencies and mixture interactions, i.e., synergistic and inhibitory effects. Our full model alone has the necessary complexity to simulate these complex response characteristics. To account for the complex response characteristics of honeybee receptor neurons, we suggest that several different receptor protein types and at least two second messenger systems are necessary that may interact at various levels of the transduction cascade and may eventually have opposing effects on receptor neuron excitability.


Assuntos
Modelos Teóricos , Redes Neurais de Computação , Neurônios/fisiologia , Animais , Abelhas , Células Quimiorreceptoras/fisiologia , Simulação por Computador , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...