Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
AJNR Am J Neuroradiol ; 29(8): 1566-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18599579

RESUMO

BACKGROUND AND PURPOSE: The molecular characteristics of the pathophysiology of saccular aneurysms remain poorly understood. The purpose of the current study was to investigate the expression of various groups of genes at different stages of aneurysm age in elastase-induced saccular aneurysms in rabbits through the use of deoxyribonucleic acid (DNA) microarrays. MATERIALS AND METHODS: A microarray consisting of genes related to cell adhesion, apoptosis, cell signaling, growth, inflammation, vascular remodeling, and oxidative stress was constructed by using rabbit nucleotide sequences. Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery (CCA) in 12 rabbits. Two weeks (n=6) and 12 weeks (n=6) after aneurysm creation, ribonucleic acid (RNA) was isolated from the aneurysm and the control unoperated left CCA and was used for microarray experiments. Real-time polymerase chain reaction (RT-PCR) was performed for validation of microarray results. RESULTS: Of 209 genes, 157 (75%) at 2 weeks and 88 (42%) at 12 weeks demonstrated statistically significant differential expression between aneurysm tissue and the control left CCA tissue (P < .05). Multiple genes implicated in vessel wall remodeling were found to be elevated at 2 weeks and at 12 weeks. Expression of cell adhesion molecules and antioxidant enzymes was down-regulated at 2 weeks but was not significantly different from that of controls at 12 weeks. Most transcription factors, inflammatory genes, and structural genes showed underexpression at both time points. The expression profiles of selected genes were confirmed by RT-PCR. CONCLUSION: Multiple genes in diverse pathways have been differentially expressed in the rabbit aneurysm model.


Assuntos
Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Aneurisma Intracraniano/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Proteínas/análise , Animais , Coelhos
3.
AJNR Am J Neuroradiol ; 28(5): 864-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17494658

RESUMO

BACKGROUND AND PURPOSE: The molecular characteristics of intracranial aneurysms are still poorly documented. A rabbit elastase aneurysm model has been helpful in the evaluation of devices and strategies involved in endovascular treatment of aneurysms. The goal of this project was to document the molecular changes, assessed by gene chip microarrays, associated with the creation of aneurysms in this model compared with the contralateral carotid artery. MATERIALS AND METHODS: A microarray of rabbit genes of interest was constructed using rabbit nucleotide sequences from GenBank. Elastase-induced saccular aneurysms were created at the origin of the right common carotid artery in 4 rabbits. Twelve weeks after aneurysm creation, RNA was isolated from the aneurysm as well as the contralateral common carotid artery and used for microarray experiments. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on 1 animal as a confirmatory test. RESULTS: Ninety-six (46%) of 209 genes in the microarray were differentially expressed in the rabbit aneurysm compared with the contralateral common carotid artery. In general, differential gene expression followed specific molecular pathways. Similarities were found between rabbit aneurysms and human intracranial aneurysms, including increased metalloproteinase activity and decreased production of the extracellular matrix. RT-PCR results confirmed the differential expression found by the gene chip microarray. CONCLUSIONS: The molecular characteristics of the rabbit elastase-induced saccular aneurysm are described. The rabbit aneurysm model shares some molecular features with human intracranial aneurysms. Future studies can use the rabbit model and the new rabbit gene chip microarray to study the molecular aspects of saccular aneurysms.


Assuntos
Aneurisma Intracraniano/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , Animais , Artéria Carótida Primitiva/fisiologia , Modelos Animais de Doenças , Aneurisma Intracraniano/fisiopatologia , Elastase Pancreática , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...