Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; : e0104624, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016557

RESUMO

The respiratory syncytial virus (RSV) M2-1 protein is a transcriptional antitermination factor crucial for efficiently synthesizing multiple full-length viral mRNAs. During RSV infection, M2-1 exists in a complex with mRNA within cytoplasmic compartments called inclusion body-associated granules (IBAGs). Prior studies showed that M2-1 can bind along the entire length of viral mRNAs instead of just gene-end (GE) sequences, suggesting that M2-1 has more sophisticated RNA recognition and binding characteristics. Here, we analyzed the higher oligomeric complexes formed by M2-1 and RNAs in vitro using size exclusion chromatography (SEC), electrophoretic mobility shift assays (EMSA), negative stain electron microscopy (EM), and mutagenesis. We observed that the minimal RNA length for such higher oligomeric assembly is about 14 nucleotides for polyadenine sequences, and longer RNAs exhibit distinct RNA-induced binding modality to M2-1, leading to enhanced particle formation frequency and particle homogeneity as the local RNA concentration increases. We showed that particular cysteine residues of the M2-1 cysteine-cysteine-cystine-histidine (CCCH) zinc-binding motif are essential for higher oligomeric assembly. Furthermore, complexes assembled with long polyadenine sequences remain unaffected when co-incubated with ribonucleases or a zinc chelation agent. Our study provided new insights into the higher oligomeric assembly of M2-1 with longer RNA.IMPORTANCERespiratory syncytial virus (RSV) causes significant respiratory infections in infants, the elderly, and immunocompromised individuals. The virus forms specialized compartments to produce genetic material, with the M2-1 protein playing a pivotal role. M2-1 acts as an anti-terminator in viral transcription, ensuring the creation of complete viral mRNA and associating with both viral and cellular mRNA. Our research focuses on understanding M2-1's function in viral mRNA synthesis by modeling interactions in a controlled environment. This approach is crucial due to the challenges of studying these compartments in vivo. Reconstructing the system in vitro uncovers structural and biochemical aspects and reveals the potential functions of M2-1 and its homologs in related viruses. Our work may contribute to identifying targets for antiviral inhibitors and advancing RSV infection treatment.

2.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851557

RESUMO

The nucleocapsids (NCs) of the respiratory syncytial virus (RSV) can display multiple morphologies in vivo, including spherical, asymmetric, and filamentous conformations. Obtaining homogeneous ring-like oligomers in vitro is significant since they structurally represent one turn of the characteristic RSV NC helical filament. Here, we analyzed and optimized conditions for forming homogenous, recombinant nucleocapsid-like particles (NCLPs) of RSV in vitro. We examined the effects of modifying the integrated RNA length and sequence, altering incubation time, and varying buffer parameters, including salt concentration and pH, on ring-like NCLPs assembly using negative stain electron microscopy (EM) imaging. We showed that high-quality, homogeneous particles are assembled when incubating short, adenine-rich RNA sequences with RNA-free N associated with P (N0P). Further, we reported that a co-incubation duration greater than 3 days, a NaCl concentration between 100 mM and 200 mM, and a pH between 7 and 8 are optimal for N-RNA ring assembly with polyadenine RNA sequences. We believe assembling high-quality, homogeneous NCLPs in vitro will allow for further analysis of RSV RNA synthesis. This work may also lend insights into obtaining high-resolution nucleocapsid homogeneous structures for in vitro analysis of antiviral drug candidates against RSV and related viruses.


Assuntos
Vírus Sincicial Respiratório Humano , Vírus Sincicial Respiratório Humano/genética , Vírion , Nucleocapsídeo , Adenina , Antivirais/farmacologia , RNA , Cloreto de Sódio
3.
J Vis Exp ; (173)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34398139

RESUMO

The use of an authentic RNA template is critical to advance the fundamental knowledge of viral RNA synthesis that can guide both mechanistic discovery and assay development in virology. The RNA template of nonsegmented negative-sense (NNS) RNA viruses, such as the respiratory syncytial virus (RSV), is not an RNA molecule alone but rather a nucleoprotein (N) encapsidated ribonucleoprotein complex. Despite the importance of the authentic RNA template, the generation and assembly of such a ribonucleoprotein complex remain sophisticated and require in-depth elucidation. The main challenge is that the overexpressed RSV N binds non-specifically to cellular RNAs to form random nucleocapsid-like particles (NCLPs). Here, we established a protocol to obtain RNA-free N (N0) first by co-expressing N with a chaperone phosphoprotein (P), then assembling N0 with RNA oligos with the RSV-specific RNA sequence to obtain virus-specific nucleocapsids (NCs). This protocol shows how to overcome the difficulty in the preparation of this traditionally challenging viral ribonucleoprotein complex.


Assuntos
Vírus Sincicial Respiratório Humano , Nucleocapsídeo/genética , Nucleoproteínas/genética , Fosfoproteínas , RNA Viral/genética , Vírus Sincicial Respiratório Humano/genética
4.
Nanoscale ; 11(41): 19571-19578, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591616

RESUMO

We introduce a general approach for synthesizing multicomponent metal-decorated crumpled reduced graphene oxide nanocomposites using a one-step, continuous flame-based process. Crumpled reduced graphene oxide balls (CGB) were produced from graphene oxide (GO) in a High Temperature Reducing Jet (HTRJ) reactor. Moreover, CGBs were simultaneously decorated with different transition metal nanoparticles, including cobalt (Co), nickel (Ni), iron (Fe), and palladium (Pd). Various metal alloy-decorated crumpled reduced graphene oxide balls (M-CGBs) including CoPd-, CoNi-, CoPdNi-, and CoNiFe-CGBs were successfully synthesized using a general recipe. The key advantage of the HTRJ system over common flame-based aerosol synthesis methods is the separation of flame and product formation zones, which allows production and/or reduction of nanomaterials that can be reduced by H2 in the presence of H2O. Nanomaterials are produced from aqueous precursors containing low-cost metal salts and dispersed GO. Electron microscopy and other characterization methods show the decoration of the CGBs with sub-4 nm diameter binary and ternary alloy, non-oxide transition metal nanoparticles of controlled compositions. The nanostructures made by this process can potentially be used as electrocatalysts for fuel cells, electrodes in batteries and supercapacitors, conductive inks for printed electronics, catalysts in wastewater treatment, and many other applications where a graphitized carbon-metal nanomaterial is needed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...