Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8311, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594449

RESUMO

Several bacteria of environmental and clinical origins, including some human-associated strains secrete a cross-kingdom signaling molecule indole-3-acetic acid (IAA). IAA is a tryptophan (trp) derivative mainly known for regulating plant growth and development as a hormone. However, the nutritional sources that boost IAA secretion in bacteria and the impact of secreted IAA on non-plant eukaryotic hosts remained less explored. Here, we demonstrate significant trp-dependent IAA production in Pseudomonas juntendi NEEL19 when provided with ethanol as a carbon source in liquid cultures. IAA was further characterized to modulate the odor discrimination, motility and survivability in Drosophila melanogaster. A detailed analysis of IAA-fed fly brain proteome using high-resolution mass spectrometry showed significant (fold change, ± 2; p ≤ 0.05) alteration in the proteins governing neuromuscular features, audio-visual perception and energy metabolism as compared to IAA-unfed controls. Sex-wise variations in differentially regulated proteins were witnessed despite having similar visible changes in chemo perception and psychomotor responses in IAA-fed flies. This study not only revealed ethanol-specific enhancement in trp-dependent IAA production in P. juntendi, but also showed marked behavioral alterations in flies for which variations in an array of proteins governing odor discrimination, psychomotor responses, and energy metabolism are held responsible. Our study provided novel insights into disruptive attributes of bacterial IAA that can potentially influence the eukaryotic gut-brain axis having broad environmental and clinical implications.


Assuntos
Drosophila melanogaster , Reguladores de Crescimento de Plantas , Animais , Humanos , Drosophila melanogaster/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/farmacologia , Ácidos Indolacéticos/metabolismo , Bactérias/metabolismo , Etanol/farmacologia
2.
Int J Radiat Biol ; : 1-12, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38506659

RESUMO

PURPOSE: Radiation-induced Nausea and Vomiting (RINV) is an important side effect and conservative estimates are that 50-80% of the patients undergoing curative radiotherapy (RT) will experience some sought of retching, nausea, and/or vomiting during the course of their treatment. Conventionally, antiemetic drugs like the 5-hydroxytryptamine receptor antagonists and steroids are the mainstay of treatment. However, the use of these agents, especially steroids, can cause side effects and thereby negate the proposed benefits. The antiemetic effects of Centella asiatica (Indian pennywort), Hippophae rhamnoides (Sea buckthorn), oil of Mentha spicata (Spearmint) and the rhizomes of Zingiber officinale (ginger) have been addressed. CONCLUSIONS: Results indicate that Indian pennywort, Sea buckthorn, Spearmint oil and ginger are beneficial in mitigating RINV. Also, of the four plants investigated in preclinical models of study, mint oil and ginger seem to be more useful and merit structured systematic translational studies to ascertain the benefit of these two agents.

3.
ACS Omega ; 8(50): 47482-47495, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38144104

RESUMO

Parkinson's disease (PD) is a progressive, age-related neurodegenerative disease. The disease is characterized by the loss of dopaminergic neurons in the substantia nigra, pars compacta of the midbrain. Pramipexole (PPX) is a novel drug used for the treatment of PD. It has a high affinity for the dopamine (DA) D2 receptor subfamily and acts as a targeted mitochondrial antioxidant. It is less effective in the treatment of PD due to its short half-life, highly inconvenient dosing schedule, and long-term side effects. In recent years, PPX-loaded nanoformulations have been actively reported to overcome these limitations. In the current study, we focused on increasing the effectiveness of PPX by minimizing the dosing frequency and improving the treatment strategy for PD. Herein, we report the synthesis of biodegradable polyvinylpyrrolidone (PVP)-capped copper oxide nanoparticles (PVP-CuO NPs), followed by PPX anchoring on the surface of the PVP-CuO NPs (PPX-PVP-CuO NC), in a simple and inexpensive method. The newly formulated PPX-PVP-CuO NC complex was analyzed for its chemical and physical properties. The PPX-PVP-CuO NC was tested to protect against rotenone (RT)-induced toxicity in the Drosophila PD model. The in vivo studies using the RT-induced Drosophila PD model showed significant changes in negative geotaxis behavior and the level of DA and acetylcholinesterase. In addition, oxidative stress markers such as glutathione-S-transferase, total glutathione, thiobarbituric acid reactive species, and protein carbonyl content showed significant amelioration. The positive changes of PPX-PVP-CuO NC treatment in behavior, neurotransmitter level, and antioxidant level suggest its potential role in mitigating the PD phenotype. The formulation can be used for treatment or pharmacological intervention against PD.

4.
Chemosphere ; 336: 139215, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37336444

RESUMO

Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d post-treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim based herbicide exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-based herbicide treated mice, the expression of Erß and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-based herbicide treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.


Assuntos
Herbicidas , Gravidez , Animais , Feminino , Camundongos , Masculino , Herbicidas/toxicidade , Herbicidas/metabolismo , Proteômica , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Desenvolvimento Embrionário
5.
Food Funct ; 14(13): 5921-5935, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37350117

RESUMO

Exposure to ionizing radiation (IR) is a common occurrence in clinical practice and incidents involving nuclear detonation or nuclear reactor accidents. IR triggers cellular events that result in oxidative stress and damage to macromolecules, rendering it harmful. While the central nervous system (CNS) was once believed to be resistant to radiation, emerging evidence suggests that even small doses of IR can adversely impact the brain. Exposure to an unsafe dose of radiation can cause increased permeability of the blood-brain barrier (BBB), neuronal apoptosis, reduced neurogenesis, impaired synaptic plasticity, and cognitive dysfunction. In recent years, the potential benefits of dietary agents and phytochemicals for mental health and radiation-induced damage have been widely investigated. Despite this, few studies have explored the protective effects of plants against radiation-induced brain damage. Here, we present a review collating evidence on the beneficial effects of dietary plants on radiation-induced brain damage based on behavioral studies. Notably, Amaranthus paniculatus, Grewia asiatica, Lycium barbarum, and phytochemicals such as vitamin E, corilagin, curcumin, resveratrol, and ursolic acid have demonstrated potential in mitigating radiation-induced damage to the CNS. Furthermore, preliminary studies have indicated that alpha-tocopherol and the micronutrient selenium have neuroprotective effects in cancer survivors previously treated with radiation to the brain. This review focuses exclusively on behavioral outcomes to assess the impact of ionizing radiation on the CNS and the effectiveness of dietary plants and phytochemicals as neuroprotective agents against radiation-induced neuronal damage.


Assuntos
Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Neurônios , Resveratrol , Cognição , Compostos Fitoquímicos/farmacologia
6.
Food Funct ; 14(3): 1290-1319, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688345

RESUMO

Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, ß-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.


Assuntos
Punica granatum , Lesões por Radiação , Animais , Humanos , Frutas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/análise , Ácido Ascórbico , Compostos Fitoquímicos/farmacologia , Radiação Ionizante
7.
Mol Neurobiol ; 60(1): 303-316, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36261695

RESUMO

Accumulation of Aß42 peptides forming plaque in various regions of the brain is a hallmark of Alzheimer's disease (AD) progression. However, to date, there is no effective management strategy reported for attenuation of Aß42-induced toxicity in the early stages of the disease. Alternate medicinal systems such as Ayurveda in the past few decades show promising results in the management of neuronal complications. Medhya Rasayana such as Brahmi is known for its neuroprotective properties via resolving memory-related issues, while the underlying molecular mechanism of the same remains unclear. In the present study, we aimed to understand the neuroprotective effects of the aqueous extract of Bacopa monnieri and Centella asiatica (both commonly known as Brahmi) against the Aß42 expressing model of the Drosophila melanogaster. By applying a quantitative proteomics approach, the study identified > 90% of differentially expressed proteins from Aß42 expressing D. melanogaster were either restored to their original expression pattern or showed no change in expression pattern upon receiving either Brahmi extract treatment. The Brahmi restored proteins were part of neuronal pathways associated with cell cycle re-entry, apoptosis, and mitochondrial dynamics. The neuroprotective effect of Brahmi was also validated by negative geotaxis behavioral analysis suggesting its protective role against behavioral deficits exerted by Aß42 toxicity. We believe that these discoveries will provide a platform for developing novel therapeutics for AD management by deciphering molecular targets of neuroprotection conferred by an aqueous extract of Bacopa monnieri or Centella asiatica.


Assuntos
Doença de Alzheimer , Bacopa , Fármacos Neuroprotetores , Animais , Drosophila melanogaster , Neuroproteção , Proteômica , Bacopa/química , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Peptídeos beta-Amiloides/toxicidade
8.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557829

RESUMO

In the present work, a series of new 1-{5-[2,5-bis(2,2,2-trifluoroethoxy)phenyl]-1,3,4-oxadiazol-3-acetyl-2-aryl-2H/methyl derivatives were synthesized through a multistep reaction sequence. The compounds were synthesized by the condensation of various aldehydes and acetophenones with the laboratory-synthesized acid hydrazide, which afforded the Schiff's bases. Cyclization of the Schiff bases yielded 1,3,4-oxadiazole derivatives. By spectral analysis, the structures of the newly synthesized compounds were elucidated, and further, their anti-cancer and anti-diabetic properties were investigated. To examine the dynamic behavior of the candidates at the binding site of the protein, molecular docking experiments on the synthesized compounds were performed, followed by a molecular dynamic simulation. ADMET (chemical absorption, distribution, metabolism, excretion, and toxicity) prediction revealed that most of the synthesized compounds follow Lipinski's rule of 5. The results were further correlated with biological studies. Using a cytotoxic assay, the newly synthesized 1,3,4-Oxadiazoles were screened for their in vitro cytotoxic efficacy against the LN229 Glioblastoma cell line. From the cytotoxic assay, the compounds 5b, 5d, and 5m were taken for colony formation assay and tunnel assay have shown significant cell apoptosis by damaging the DNA of cancer cells. The in vivo studies using a genetically modified diabetic model, Drosophila melanogaster, indicated that compounds 5d and 5f have better anti-diabetic activity among the different synthesized compounds. These compounds lowered the glucose levels significantly in the tested model.


Assuntos
Antineoplásicos , Oxidiazóis , Animais , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxidiazóis/química , Drosophila melanogaster , Antineoplásicos/química , Hipoglicemiantes/farmacologia , Relação Estrutura-Atividade
9.
Reprod Fertil Dev ; 34(17): 1059-1077, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36219878

RESUMO

CONTEXT: Tuberculosis is one of the major infectious diseases, with people of reproductive age group having a high risk of infection. AIMS: The present study was designed to understand the consequences of anti-tuberculosis drugs (ATDs) used in DOTS (directly observed treatment short course) schedule on ovarian function. METHODS: Adult female Swiss albino mice were orally administered with combinations of ATDs used in the DOTS schedule every day for 4weeks. At 2weeks after the cessation of ATDs administration, the endocrine changes and ovarian function were assessed in mice. KEY RESULTS: Administration of ATDs to mice resulted in a prolonged estrous cycle, reduced ovarian follicle reserve, alteration in FSH, LH, and progesterone level, and decreased the number of ovulated oocytes. Further, the degree of fragmentation, degeneration, abnormal distribution of cytoplasmic organelles, abnormal spindle organisation, and chromosomal misalignment were higher in oocytes that were ovulated following superovulation. Blastocysts derived from ATDs treated mice had significantly lower total cell numbers and greater DNA damage. A marginal increase in the number of resorbed fetuses was observed in all the ATDs treated groups except in the multidrug resistance treatment group. Male progeny of ATDs treated mice had decreased sperm count and lower progressive motility, while female progeny exhibited a non-significant reduction in the number of oocytes ovulated. CONCLUSIONS: Theresults of this study suggest that ATDs can have significant adverse effects on the ovarian reserve, cytoplasmic organisation of oocytes, and can potentially cause transgenerational changes. IMPLICATIONS: The findings of the present study indicate ovarian toxicity of ATDs and warrant further research in the direction of identifying alternate drugs with minimal toxicity, and strategies to mitigate the ovarian toxicity induced by these drugs.


Assuntos
Reserva Ovariana , Masculino , Camundongos , Feminino , Animais , Antituberculosos/farmacologia , Sêmen , Oócitos , Superovulação
10.
3 Biotech ; 12(10): 280, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36275361

RESUMO

Inflammatory bowel disease (IBD) is a group of disorders characterized by chronic inflammation in the intestine. Several studies confirmed that oxidative stress induced by an enormous amount of reactive free radicals triggers the onset of IBD. Currently, there is an increasing trend in the global incidence of IBD and it is coupled with a lack of adequate long-term therapeutic options. At the same time, progress in research to understand the pathogenesis of IBD has been hampered due to the absence of adequate animal models. Currently, the toxic chemical Dextran Sulfate Sodium (DSS) induced gut inflammation in rodents is widely perceived as a good model of experimental colitis or IBD. Drosophila melanogaster, a genetic animal model, shares ~ 75% sequence similarity to genes causing different diseases in humans and also has conserved digestion and absorption features. Therefore, in the current study, we used Drosophila as a model system to induce and investigate DSS-induced colitis. Anatomical, biochemical, and molecular analyses were performed to measure the levels of inflammation and cellular disturbances in the gastrointestinal (GI) tract of Drosophila. Our study shows that DSS-induced inflammation lowers the levels of antioxidant molecules, affects the life span, reduces physiological activity and induces cellular damage in the GI tract mimicking pathophysiological features of IBD in Drosophila. Such a DSS-induced Drosophila colitis model can be further used for understanding the molecular pathology of IBD and screening novel drugs. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03349-2.

11.
Free Radic Biol Med ; 193(Pt 1): 190-201, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216301

RESUMO

Hematopoietic stem cells/progenitor cells (HSC/HPCs) orchestrate the hematopoietic process, effectively regulated by the hematopoietic niche under normal and stressed conditions. The hematopoietic niche provides various soluble factors which influence the differentiation and self-renewal of HSC/HSPs. Unceasing differentiation/proliferation/high metabolic activity of HSC/HPCs makes them susceptible to damage by environmental toxicants like benzene. Oxidative stress, epigenetic modifications, and DNA damage in the HSC/HPCs are the key factors of benzene-induced hematopoietic injury. However, the role of the hematopoietic niche in benzene-induced hematopoietic injury/response is still void. Therefore, the current study aims to unravel the role of the hematopoietic niche in benzene-induced hematotoxicity using a genetically tractable model, Drosophila melanogaster. The lymph gland is a dedicated hematopoietic organ in Drosophila larvae. A group of 30-45 cells called the posterior signaling center (PSC) in the lymph gland acts as a niche that regulates Drosophila HSC/HPCs maintenance. Benzene exposure to Drosophila larvae (48 h) resulted in aberrant hemocyte production, especially hyper-differentiation of lamellocytes followed by premature lymph gland dispersal and reduced adult emergence upon developmental exposure. Subsequent genetic experiments revealed that benzene-induced lamellocyte production and premature lymph gland dispersal were PSC mediated. The genetic experiments further showed that benzene generates Dual oxidase (Duox)-dependent Reactive Oxygen Species (ROS) in the PSC, activating Toll/NF-κB signaling, which is essential for the aberrant hemocyte production, lymph gland dispersal, and larval survival. Together, the study establishes a functional perspective of the hematopoietic niche in a benzene-induced hematopoietic emergency in a genetic model, Drosophila, which might be relevant to higher organisms.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Benzeno/toxicidade , Hematopoese/genética , Drosophila/metabolismo , Diferenciação Celular/genética , Larva/metabolismo
12.
Mol Neurobiol ; 59(10): 6091-6106, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35864434

RESUMO

Nardostachys jatamansi has long been used to prepare Medhya Rasayana in traditional Indian Ayurveda medicine to treat neurological disorders and enhance memory. Jatamansinol from the N. jatamansi against Alzheimer's disease (AD) showed that it could be a multitargeted drug against AD. Drosophila is an ideal model organism for studying a progressive age-related neurodegenerative disease such as AD since its neuronal organizations and functioning are highly similar to that of humans. The current study investigates the neuroprotective properties of jatamansinol against Tau-induced neurotoxicity in the AD Drosophila model. Results indicate jatamansinol is not an antifeedant for larva and adult Drosophila. Lifespan, locomotor activity, learning and memory, Tau protein expression level, eye degeneration, oxidative stress level, and cholinesterase activities were analyzed in 10, 20, and 30-day-old control (wild type), and tauopathy flies reared on jatamansinol supplemented food or regular food without jatamansinol supplementation. Jatamansinol treatment significantly extends the lifespan, improves locomotor activity, enhances learning and memory, and reduces Tau protein levels in tauopathy flies. It boosts the antioxidant enzyme activities, prevents Tau-induced oxidative stress, ameliorates eye degeneration, and inhibits cholinesterase activities in Tau-induced AD model. This study provides the first evidence that jatamansinol protects against Tau's neurotoxic effect in the AD Drosophila model, and it can be a potential therapeutic drug candidate for AD.


Assuntos
Doença de Alzheimer , Nardostachys , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Tauopatias , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/uso terapêutico , Colinesterases/uso terapêutico , Modelos Animais de Doenças , Drosophila/metabolismo , Humanos , Nardostachys/metabolismo , Proteínas tau/metabolismo
13.
Curr Pharm Des ; 28(19): 1543-1560, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35652402

RESUMO

The World Health Organization predicts a 70% increase in cancer incidents in developing nations over the next decade, and it will be the second leading cause of death worldwide. Traditional plant-based medicine systems play an important role against various diseases and provide health care to a large section of the population in developing countries. Indigenous fruits and their bioactive compounds with beneficial effects like antioxidant, antiproliferative, and immunomodulatory are shown to be useful in preventing the incidence of cancer. India is one of the biodiversity regions and is native to numerous flora and fauna in the world. Of the many fruiting trees indigenous to India, Mango (Mangifera indica), Black plum (Eugenia jambolana or Syzygium jambolana), Indian gooseberry (Emblica officinalis or Phyllanthus emblica), kokum (Garcinia indica or Brindonia indica), stone apple or bael (Aegle marmelos), Jackfruit (Artocarpus heterophyllus), Karaunda (Carissa carandas) and Phalsa (Grewia asiatica), Monkey Jackfruit (Artocarpus lakoocha) and Elephant apple (Dillenia indica) have been shown to be beneficial in preventing cancer and in the treatment of cancer in validated preclinical models of study. In this review, efforts are also made to collate the fruits' anticancer effects and the important phytochemicals. Efforts are also made to address the underlying mechanism/s responsible for the beneficial effects of these fruits in cancer prevention and treatment. These fruits have been a part of the diet, are non-toxic, and easily acceptable for human application. The plants and some of their phytochemicals possess diverse medicinal properties. The authors propose that future studies should be directed at detailed studies with various preclinical models of study with both composite fruit extract/juice and the individual phytochemicals. Additionally, translational studies should be planned with the highly beneficial, well-investigated and pharmacologically multifactorial amla to understand its usefulness as a cancer preventive in the high-risk population and as a supportive agent in cancer survivors. The outcome of both preclinical and clinical studies will be useful for patients, the healthcare fraternity, pharmaceutical, and agro-based sectors.


Assuntos
Frutas , Neoplasias , Compostos Fitoquímicos , Extratos Vegetais , Atenção à Saúde , Frutas/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Phyllanthus emblica/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química
14.
Environ Toxicol ; 37(7): 1723-1739, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35301792

RESUMO

Benzene, a ubiquitous environmental chemical, is known to cause immune dysfunction and developmental defects. This study aims to investigate the relation between benzene-induced immune dysfunction and developmental toxicity in a genetically tractable animal model, Drosophila melanogaster. Further, the study explored the protective role of Heat Shock Protein 70 (Hsp70) against benzene-induced immunotoxicity and subsequent developmental impact. Drosophila larvae exposed to benzene (1.0, 10.0, and 100.0 mM) were examined for total hemocyte (immune cells) count, phagocytic activity, oxidative stress, apoptosis, and their developmental delay and reduction were analyzed. Benzene exposure for 48 h reduced the total hemocytes count and phagocytic activity, along with an increase in the Reactive Oxygen Species (ROS), and lipid peroxidation in the larval hemocytes. Subsequently, JNK-dependent activation of the apoptosis (Caspase-3 dependent) was also observed. During their development, benzene exposure to Drosophila larvae led to 3 days of delay in development, and ~40% reduced adult emergence. Hsp70-overexpression in hemocytes was found to mitigate benzene-induced oxidative stress and abrogated the JNK-mediated apoptosis in hemocytes, thus restoring total hemocyte count and improving phagocytotic activity. Further, hsp70-overexpression in hemocytes also lessened the benzene-induced developmental delay (rescue of 2.5 days) and improved adult emergence (~20%) emergence, revealing a possible control of immune cells on the organism's development and survival. Overall, this study established that hsp70-overexpression in the Drosophila hemocytes confers protection against benzene-induced immune injury via regulating the ROS/JNK signaling pathway, which helps in the organism's survival and development.


Assuntos
Proteínas de Choque Térmico HSP70 , Hemócitos , Animais , Apoptose , Benzeno/metabolismo , Benzeno/toxicidade , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Larva/metabolismo , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio/metabolismo
15.
OMICS ; 26(1): 51-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35006003

RESUMO

Production and deposition of ß-amyloid peptides (Aß) are among the major hallmarks of the pathogenesis of Alzheimer's disease (AD). Mapping the altered protein dynamics associated with Aß accumulation and neuronal damage may open up new avenues to innovation for drug target discovery in AD. Using quantitative proteomics, we report new findings from the amyloid beta-peptide with 42 amino acids (Aß42) expressing Drosophila melanogaster model for AD compared to that of the wild-type flies. We identified 302,241 peptide-spectrum matches with 25,641 nonredundant peptides corresponding to 7959 D. melanogaster proteins. Furthermore, we unraveled 538 significantly altered proteins in Aß42 expressing flies. These differentially expressed proteins were enriched for biological processes associated with neuronal damage leading to AD progression. We also identified 463 unique post-translational modification events mapping to 202 proteins from the same dataset. Among these, 303 modified peptides corresponding to 246 proteins were also altered in the AD model. These modified proteins are known to be involved in the disruption of molecular functions maintaining neuronal plasticity. This study provides new molecular leads on altered protein dynamics relevant to neurodegeneration, neuroplasticity, and AD progression induced by Aß42 toxicity. These proteins may prove useful to discover new drugs in an AD model of D. melanogaster and evaluate their efficacy and mode of molecular action in the future.


Assuntos
Doença de Alzheimer , Proteínas de Drosophila , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Fragmentos de Peptídeos , Proteômica
16.
Electromagn Biol Med ; 41(1): 1-14, 2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34382485

RESUMO

Although the evidence is inconclusive, epidemiological studies strongly suggest that increased exposure to electromagnetic radiation (EMR) increases the risk of brain tumors, parotid gland tumors, and seminoma. The International Agency for Research on Cancer (IARC) has classified mobile phone radiofrequency radiation as possibly carcinogenic to humans (Group 2B). Humans being are inadvertently being exposed to EMR as its prevalence increases, mainly through mobile phones. Radiation exposure is unavoidable in the current context, with mobile phones being an inevitable necessity. Prudent usage of medicinal plants with a long history of mention in traditional and folklore medicine and, more importantly, are safe, inexpensive, and easily acceptable for long-term human use would be an appealing and viable option for mitigating the deleterious effects of EMR. Plants with free radical scavenging, anti-oxidant and immunomodulatory properties are beneficial in maintaining salubrious health. Green tea polyphenols, Ginkgo biloba, lotus seedpod procyanidins, garlic extract, Loranthus longiflorus, Curcuma amada, and Rosmarinus officinalis have all been shown to confer neuroprotective effects in validated experimental models of study. The purpose of this review is to compile for the first time the protective effects of these plants against mobile phone-induced neuronal damage, as well as to highlight the various mechanisms of action that are elicited to invoke the beneficial effects.


Assuntos
Telefone Celular , Plantas Medicinais , Antioxidantes , Campos Eletromagnéticos , Radiação Eletromagnética , Humanos , Neurônios , Ondas de Rádio
17.
Anticancer Agents Med Chem ; 22(1): 53-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34229590

RESUMO

Ionising radiation has been an important modality in cancer treatment and its value is immense when surgical intervention is risky or might debilitate/adversely affect the patient. However, the beneficial effect of radiation modality is negated by the damage to the adjacent healthy tissue in the field of radiation. Under these situations, the use of radioprotective compounds that can selectively protect normal tissues against radiation injury is considered very useful. However, research spanning over half a century has shown that there are no ideal radioprotectors available. The United States Food and Drug Administration (FDA or USFDA) approved amifostine, or WR-2721 (Walter Reed-2721) [chemically S-2-(3-aminopropyl-amino) ethyl phosphorothioic acid] is toxic at their optimal concentrations. This has necessitated the need for agents that are safe and easily acceptable to humans. BACKGROUND: Dietary agents with beneficial effects like free radical scavenging, antioxidant and immunomodulatory effects are being recognized as useful and have been investigated for their radioprotective properties. Studies in these lines have shown that the fruits of Aegle marmelos (stone apple or bael), Emblica officinalis or Phyllanthus emblica (Indian gooseberry/amla), Eugenia jambolana or Syzygium jambolana (black plum/jamun), Mangifera indica (mango) and Grewia asiatica (phalsa or falsa) that are originally reported to be indigenous to India have been investigated for their usefulness as radioprotective agents. OBJECTIVE: The objective of this review is to summarize the beneficial effects of the Indian indigenous fruits, stone apple, mango, Indian gooseberry, black plum, and phalsa, in mitigating radiation-induced side effects, emphasize the underlying mechanism of action for the beneficial effects and address aspects that merit detail investigations for these fruits to move towards clinical application in the near future. METHODS: The authors data-mined Google Scholar, PubMed, Embase, and the Cochrane Library for publications in the field from 1981 up to July 2020. The focus was on the radioprotection and the mechanism responsible for the beneficial effects, and accordingly, the articles were collated and analyzed. RESULTS: This article emphasizes the usefulness of stone apple, mango, Indian gooseberry, black plum, and phalsa as radioprotective agents. From a mechanistic view, reports are suggestive that the beneficial effects are mediated by triggering free radical scavenging, antioxidant, anti-mutagenic and anti-inflammatory effects. CONCLUSION: For the first time, this review addresses the beneficial effects of mango, Indian gooseberry, black plum, stone apple and phalsa as radioprotective agents. The authors suggest that future studies should be directed at understanding the selective radioprotective effects with tumor-bearing laboratory animals to understand their usefulness as radioprotective drug/s during radiotherapy and as a food supplement to protect people from getting exposed to low doses of radiation in occupational settings. Phase I clinical trial studies are also required to ascertain the optimal dose and the schedule to be followed with the standardized extract of these fruits. The most important aspect is that these fruits, being a part of the diet, have been consumed since the beginning of mankind, are non-toxic, possess diverse medicinal properties, have easy acceptability, all of which will help take research forward and be of benefit to patients, occupational workers, agro-based sectors and pharma industries.


Assuntos
Antineoplásicos/farmacologia , Frutas/química , Neoplasias/tratamento farmacológico , Protetores contra Radiação/farmacologia , Animais , Antineoplásicos/química , Humanos , Índia , Radiação Ionizante , Protetores contra Radiação/química
18.
Environ Pollut ; 293: 118484, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774861

RESUMO

Deciphering the potential mechanism of chemical-induced toxicity enables us to alleviate the cellular and organismal dysfunction. The environmental presence of nonylphenol (endocrine disruptor) has a major health concern due to its widespread usage in our day-to-day life. The current study establishes a novel functional link among nonylphenol-induced oxidative stress, Heat shock protein 27 (Hsp27, member of stress protein family), and Ecdysone receptor (EcR, a nuclear receptor), which eventually coordinates the nonylphenol-induced sub-cellular and organismal level toxicity in a genetically tractable model Drosophila melanogaster. Drosophila larvae exposed to nonylphenol (0.05, 0.5 and 5.0 µg/mL) showed a significant decrease in Hsp27 and EcR mRNA levels in the midgut. In concurrence, reactive oxygen species (ROS) levels were increased with a corresponding decline in glutathione (GSH) level and Thioredoxin reductase (TrxR) activity. Increased lipid peroxidation (LPO), protein carbonyl (PC) contents, and cell death were also observed in a correlation with the nonylphenol concentrations. Sub-cellular toxicity poses a negative organismal response, which was evident by delayed larval development and reduced Drosophila emergence. Subsequently, a positive genetic correlation (p < 0.001) between EcR and Hsp27 revealed that nonylphenol-dependent EcR reduction is a possible link for the downregulation of Hsp27. Further, Hsp27 overexpression in midgut cells showed a reduction in nonylphenol-induced intracellular ROS, LPO, PC content, and cell death through the TrxR mediated regenerative pathway and reduced GSH level improving the organismal response to the nonylphenol exposure. Altogether, the study elucidates the potential EcR-Hsp27 molecular interactions in mitigating the nonylphenol-induced cellular and organismal toxicity.


Assuntos
Drosophila melanogaster , Proteínas de Choque Térmico HSP27 , Fenóis , Receptores de Esteroides , Animais , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico/genética , Fenóis/toxicidade
19.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 3): 6330-6338, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36742808

RESUMO

Mucositis is a very painful unavoidable and common side effect in head and neck cancer patients undergoing curative radiotherapy and can affect the planned treatment. In this study, attempt is made at understanding the efficacy of Emblica officinalis Linn (amla) when combined with providone iodine in mitigating radiation-induced mucositis, weight loss and tumor control. This was a retrospective chart based study and was carried out by extracting the data from the files of patients with cancer of head and neck who used amla in combination with iodine or iodine alone during the course of the curative radiotherapy (> 60 Gy). The data was entered in to Microsoft excel and subjected to statistical analysis using SPSS 17 software. The results indicate that when compared with iodine alone, the group where iodine and amla gargling were used was very effective in delaying mucositis, reduced incidence of intolerable mucositis (P = 0.027), quantitative grade of weight loss (P = 0.016), incidence of severe weight loss (P = 0.03) without affecting tumor response. The results suggest that when compared with iodine alone, amla when combined with iodine was more effective in mitigating radiation mucositis and by not interfering with the tumor cell kill. As far as the authors are aware of this is the first study that shows the usefulness of combining iodine with Amla in mitigating radiation-induced mucositis.

20.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 3): 6007-6015, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36742902

RESUMO

This study aimed to determine understanding the role of serum copper, zinc and copper/zinc ratio with tumor staging in people newly diagnosed to be affected with Head and Neck cancer and by comparing with age matched health individuals devoid of any orodental maladies. The study included patients confirmed to be affected with HN cancer with histological diagnosis of Head and Neck cancer (60) and age matched healthy volunteers (N = 23). The demographic details like age, domicile, menopausal status and pathological details (like tumor stage, number of lymph node involvement, tumor size) were collected from the patient's hospital data file. The serum levels of zinc and copper assayed as per standard procedures and the zinc/copper was calculated for the cancer patients and controls. The data were subjected to unpaired "t" test and ANOVA with Bonferroni's multiple comparisons. The association between zinc and copper levels with pathological details between the variables was ascertained using the Pearson correlation coefficient(r). A statistical value of p < 0.05 was considered to be significant in agreeance to the accepted norms. Results: This result of the study indicates that when compared to the healthy individuals, the serum levels of copper, and zinc, and copper/zinc ratio were high in patients with H&N cancer. Also when compared with controls, the levels of zinc decreased, while that of copper and copper/zinc ratio increased in people affected with H&N cancer (p = 0.017 to 0.0001) and with the stage of the tumor (p = 0.03 to 0.001). The results of the study suggest that levels of serum zinc were significantly lower and that of copper higher in H&N cancer patients than that in controls and also that it was dependent on the tumor stage. When analyzed cumulatively the results hint that zinc and copper, due to their role in free radical generation and prevention have an important role in cancer progression and possible prevention by judicious intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...