Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 16: 213, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26415775

RESUMO

BACKGROUND: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. RESULTS: Here we identify Heterochromatin Protein 1ß (HP1ß) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1ß is differentially localized and differentially associated with chromatin. Deletion of HP1ß, but not HP1α, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1ß has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1ß in ESCs. The minor fraction of HP1ß that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. CONCLUSIONS: We demonstrate an unexpected duality in the role of HP1ß: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1ß function both depends on, and regulates, the pluripotent state.


Assuntos
Proteínas Cromossômicas não Histona/genética , Células-Tronco Embrionárias , Heterocromatina/genética , Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular/genética , Reprogramação Celular/genética , Cromatina/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Camundongos , Camundongos Knockout
2.
Nat Commun ; 5: 4181, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24946904

RESUMO

Chromatin compaction mediates progenitor to post-mitotic cell transitions and modulates gene expression programs, yet the mechanisms are poorly defined. Snf2h and Snf2l are ATP-dependent chromatin remodelling proteins that assemble, reposition and space nucleosomes, and are robustly expressed in the brain. Here we show that mice conditionally inactivated for Snf2h in neural progenitors have reduced levels of histone H1 and H2A variants that compromise chromatin fluidity and transcriptional programs within the developing cerebellum. Disorganized chromatin limits Purkinje and granule neuron progenitor expansion, resulting in abnormal post-natal foliation, while deregulated transcriptional programs contribute to altered neural maturation, motor dysfunction and death. However, mice survive to young adulthood, in part from Snf2l compensation that restores Engrailed-1 expression. Similarly, Purkinje-specific Snf2h ablation affects chromatin ultrastructure and dendritic arborization, but alters cognitive skills rather than motor control. Our studies reveal that Snf2h controls chromatin organization and histone H1 dynamics for the establishment of gene expression programs underlying cerebellar morphogenesis and neural maturation.


Assuntos
Adenosina Trifosfatases/metabolismo , Cerebelo/embriologia , Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Histonas/metabolismo , Morfogênese/fisiologia , Células-Tronco Neurais/fisiologia , Análise de Variância , Animais , Western Blotting , Bromodesoxiuridina , Imunoprecipitação da Cromatina , Feminino , Fluorescência , Galactosídeos , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Indóis , Masculino , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Morfogênese/genética , Células-Tronco Neurais/metabolismo , Células de Purkinje/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste de Desempenho do Rota-Rod , Cloreto de Tolônio
3.
Genes Dev ; 28(10): 1042-7, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24831699

RESUMO

The fusion of the gametes upon fertilization results in the formation of a totipotent cell. Embryonic chromatin is expected to be able to support a large degree of plasticity. However, whether this plasticity relies on a particular conformation of the embryonic chromatin is unknown. Moreover, whether chromatin plasticity is functionally linked to cellular potency has not been addressed. Here, we adapted fluorescence recovery after photobleaching (FRAP) in the developing mouse embryo and show that mobility of the core histones H2A, H3.1, and H3.2 is unusually high in two-cell stage embryos and decreases as development proceeds. The transition toward pluripotency is accompanied by a decrease in histone mobility, and, upon lineage allocation, pluripotent cells retain higher mobility than the differentiated trophectoderm. Importantly, totipotent two-cell-like embryonic stem cells also display high core histone mobility, implying that reprogramming toward totipotency entails changes in chromatin mobility. Our data suggest that changes in chromatin dynamics underlie the transitions in cellular plasticity and that higher chromatin mobility is at the nuclear foundations of totipotency.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Totipotentes/metabolismo , Animais , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Células-Tronco Embrionárias/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...