Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2216002120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37314933

RESUMO

We present two binary lipid-sterol membrane systems that exhibit fluid-fluid coexistence. Partial phase diagrams of binary mixtures of dimyristoylphosphatidylcholine with 25-hydroxyxholesterol and 27-hydroxycholesterol, determined from small-angle X-ray scattering and fluorescence microscopy studies, show closed-loop fluid-fluid immiscibility gaps, with the appearance of a single fluid phase both at higher and lower temperatures. Computer simulations suggest that this unusual phase behavior results from the ability of these oxysterol molecules to take different orientations in the membrane depending on the temperature.

2.
Chemistry ; 29(27): e202300227, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36856078

RESUMO

Columnar mesogens constitute a fascinating class of supramolecular nano-architectures owing to the exceptional properties induced by their self-assembling behavior. Extending the π-conjugated core in such systems by incorporating heteroatoms extensively influences their mesomorphic, photophysical properties, etc., presenting them as potential candidates for optoelectronic applications. In the present work, a series of novel nitrogen and oxygen-incorporated chromenonaphthophenanthridine-based elliptical dimers have been synthesized through tandem Pictet-Spengler cyclization followed by ipso-aromatic substitution in one-pot. Mesophase characterization has been carried out by employing POM, DSC, and X-ray diffraction studies. Photophysical properties were investigated using UV-vis and emission spectroscopy. Furthermore, the charge transport properties were analyzed by time-of-flight measurements, and the observed ambipolar mobilities were found to be of the order of 10-3  cm2 V-1 s-1 . The high solubility, excellent thermal stability, self-organizing properties, and ambipolar charge transport characteristics make them promising candidates for applications in organic electronics.

3.
Phys Rev E ; 105(6-1): 064504, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35854566

RESUMO

We have studied the structure of complexes of the cationic surfactant dodecyltrimethylammonium bromide (DTAB) with DNA as a function of surfactant to DNA base molar ratio (R) and salt concentration. Small-angle x-ray scattering data show the formation of nematic gels at lower and higher salt concentrations, irrespective of the value of R. Two crystalline phases are observed over intermediate salt concentrations; a square (S) phase for R>3 and a hexagonal (H_{S}) phase for lower R. Electron density maps of these phases show intercalated structures, with DTAB micelles sandwiched between long DNA strands. The composition of these complexes, estimated using elemental analysis, indicates that the micelles are not very long, and they occupy only about half of the interstitial volume between the DNA strands. This phase behavior is strikingly different from that of complexes of DNA with longer chain surfactants cetyltrimethylammonium bromide (CTAB) and tetradecyltrimethylammonium bromide (TTAB), which show only a hexagonal (H) phase over similar ranges of R and salt concentration, the H_{S} structure observed in the present study being a sqrt[3]×sqrt[3] superlattice of the H structure. Madelung energies of the S and H structures, calculated from the electrostatic interaction between their cylindrical constituents, suggest that the former is preferred in DTAB-DNA complexes due to the smaller micellar radius of DTAB. The propensity of DTAB to form short micelles seems also to favor the H_{S} phase at lower R. These results illustrate the important role of micellar size in determining the structure of these two-dimensional macro-ion crystals.

4.
Chem Asian J ; 17(8): e202200073, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35294801

RESUMO

Rubicene, an unusual contorted polycyclic aromatic hydrocarbon, was realized to function as a novel core fragment for discotic liquid crystals. The central π-conjugated motif was prepared from dialkoxyiodobenzene via Sonagashira coupling followed by pentannulation and Scholl cyclodehydrogenation. The synthesized rubicene derivatives were found to be thermally stable and exhibit enantiotropic columnar mesophases. The columnar arrangement of these derivatives has been validated using polarising optical microscopy, differential scanning calorimetry & small-angle X-ray scattering.

5.
J Phys Chem B ; 125(36): 10364-10372, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34482689

RESUMO

A series of novel naphthophenanthridine derivatives are synthesized via N-annulation of hexabutoxytriphenylene-1-amine with various aliphatic aldehydes through the Pictet-Spengler reaction. The synthesized derivatives have been found to self-assemble into a columnar hexagonal mesophase over a wide temperature range, as validated through polarized optical microscopy, differential scanning calorimetry and X-ray diffraction experiments. The photophysical properties of these compounds were studied using UV-visible and emission spectroscopy. The synthesized compounds exhibit ambipolar charge transport, showing temperature-independent electron and hole mobility on the order of 3 × 10-4 cm2/V s, as evaluated by the time-of-flight technique. These novel N-annulated derivatives can be of immense potential toward semiconducting applications of self-assembling supramolecular systems.

6.
Biochim Biophys Acta Biomembr ; 1863(11): 183695, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273298

RESUMO

We have studied the effect of acidic pH on the phase behavior of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) using differential scanning calorimetry and x-ray scattering. Dispersions of DMPC in HCl solutions of pH = 4 and 3 behave identical to dispersions in water. The main transition temperature increases sharply and the pre-transition disappears at lower pH. An untilted gel phase is observed at pH = 2 and 1, in contrast to the tilted gel phase found at higher pH. The relatively large periodicity of the untilted gel phase, in comparison to that of the tilted gel phase occurring near neutral pH, clearly demonstrates the simultaneous charging and dehydration of the headgroups as the pH approaches the pK of the phosphate group. Headgroup dehydration at low pH also leads to the formation of DMPC crystallites and the inverted hexagonal phase at low and high temperatures, respectively, after a few days of incubation. These results show the significant effect of acidic pH on the phase behavior of zwitterionic lipids.


Assuntos
Dimiristoilfosfatidilcolina/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/química , Transição de Fase , Varredura Diferencial de Calorimetria , Temperatura de Transição
7.
Phys Rev E ; 103(2-1): 022705, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33736000

RESUMO

We have studied the effect of osmotic pressure on complexes formed by DNA with the cationic surfactant cetyltrimethylammonium tosylate using small-angle x-ray scattering. Earlier studies have shown that these complexes exhibit three different phases depending on the DNA and surfactant concentrations in the solution. The hexagonal superlattice phase (H_{I,s}^{c}) is found to be corralled into the hexagonal phase (H_{I}^{c}) above a threshold osmotic pressure. We have also estimated the DNA to surfactant micelle stoichiometry of the complexes in the three phases using elemental analysis. Our results provide further support for the structures of these complexes proposed earlier based on small-angle x-ray scattering data.


Assuntos
DNA/química , Pressão Osmótica , Transição de Fase , Tensoativos/química
8.
J Chem Phys ; 153(22): 224901, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317309

RESUMO

We have studied the structure of cetyltrimethylammonium bromide-DNA complexes using small angle x-ray diffraction and elemental analysis. These complexes exhibit a two-dimensional hexagonal phase. The diffraction data have been analyzed using electron density models based on two different structures of these complexes proposed in the literature, which differ in the micelle to DNA stoichiometry. The structure with a 1:2 micelle-DNA stoichiometry is found to be more consistent with the diffraction data. Furthermore, this structure is also supported by the stoichiometry deduced from elemental analysis. Madelung energies of the two structures, calculated from the electrostatic interaction between their cylindrical constituents, give insight into their relative stability.


Assuntos
Cetrimônio/química , DNA/química , Micelas , Espalhamento a Baixo Ângulo , Tensoativos/química , Difração de Raios X
9.
Soft Matter ; 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32975548

RESUMO

We have observed fluid-fluid coexistence in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane containing 1-decanol, using different experimental techniques and membrane morphologies. This phase behavior is reversible and occurs over a temperature range just above the chain melting transition temperature of the membrane. Although earlier experimental studies and computer simulations have shown the ability of decanol to enhance lipid chain ordering, its potential to induce fluid-fluid coexistence in membranes has not been hitherto recognized. Being the only binary membrane system known so far to exhibit fluid-fluid coexistence, the present system can serve as a simple model to gain a better understanding of mechanisms that drive this unusual phase behavior, which is believed to play an important role in the functioning of cell membranes.

10.
J Phys Condens Matter ; 32(19): 194004, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31958780

RESUMO

We present studies on the structure of complexes of the cationic, bilayer-forming surfactant, didodecyldimethylammonium bromide (DDAB), and the anionic polyelectrolyte sodium polyacrylate (PAANa). In the presence of uncomplexed polyelectrolyte in the coexisting aqueous solution, these complexes are found to exhibit a swelling transition followed by a deswelling transition on increasing the salt concentration. Lamellar structures with low periodicities occur at both low and high salt concentrations, which are stabilized by polymer bridging and van der Waals attraction, respectively. The swollen complex found at intermediate salt concentrations forms the sponge phase. Our results reveal that polyelectrolyte adsorption on bilayers has a profound effect on inter-bilayer interactions. The polymer-induced interaction changes from being attractive to repulsive as the surface coverage increases on increasing the salt concentration. Our results also confirm that polymer adsorption alters the elastic moduli of the bilayer, in agreement with earlier theoretical predictions.

11.
Soft Matter ; 15(40): 8129-8136, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31589218

RESUMO

Interaction between mononucleotides and lipid membranes is believed to have played an important role in the origin of life on Earth. Studies on mononucleotide-lipid systems hitherto have focused on the influence of the lipid environment on the organization of the mononucleotide molecules, and the effect of the latter on the confining medium has not been investigated in detail. We have probed the interaction of the mononucleotide, uridine 5'-monophosphate (UMP), and its disodium salt (UMPDSS) with fluid dimyristoylphosphatidylcholine (DMPC) membranes, using small-angle X-ray scattering (SAXS), cryogenic scanning electron microscopy (cryo-SEM) and computer simulations. UMP adsorbs and charges the lipid membrane, resulting in the formation of unilamellar vesicles in dilute solutions. Adsorption of UMP reduces the bilayer thickness of DMPC. UMPDSS has a much weaker effect on interbilayer interactions. These observations are in very good agreement with the results of an all-atom molecular dynamics simulation of these systems. In the presence of counterions, such as Na+, UMP forms small aggregates in water, which bind to the bilayer without significantly perturbing it. The phosphate moiety in the lipid headgroup is found to bind to the hydrogens from the sugar ring of UMP, while the choline group tends to bind to the two oxygens from the nucleotide base. These studies provide important insights into lipid-nucleotide interactions and the effect of the nucleotide on lipid membranes.

12.
J Chem Phys ; 150(9): 094903, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849888

RESUMO

We report salt-induced swelling transitions of a lamellar complex of the anionic polyelectrolyte, poly(acrylic acid sodium salt) (PAANa), and the cationic amphiphile, didodecyldimethylammonium chloride (DDAC). Increasing the concentration of NaCl in the solution is found to lead to a collapsed → swollen → collapsed transition of the complex. The swelling transition is driven by an abrupt increase in PAANa adsorption on DDAC bilayers above a threshold salt concentration. The lamellar periodicity of the swollen phase is not determined by the thickness of the adsorption layer, and additional mechanisms have to be invoked to understand the extent of its swelling. The swelling transition is not observed for the highest molecular weight of PAANa used, but a gradual transformation between the two collapsed structures is seen on increasing the salt concentration. The polyelectrolyte chains desorb from the bilayers at a very high salt concentration, in a process similar to the well-known destabilization of complexes of oppositely charged polyelectrolytes. However, unlike the PAANa chains, the polymer-free bilayers do not disperse uniformly in the solution. Instead, they form a collapsed lamellar stack containing very little water due to the van der Waals attraction between them. The occurrence of an abrupt swelling transition at intermediate salt concentrations in this system contrasts sharply with the gradual swelling reported in other complexes with increasing salt concentration. Furthermore, this behavior does not seem to have been anticipated by theories of complexation of oppositely charged macroions. More experiments are required for a clear understanding of the interactions stabilizing the different phases observed in this system.

13.
Nat Commun ; 8(1): 1160, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29074887

RESUMO

Buckling and wrinkling instabilities are failure modes of elastic sheets that are avoided in the traditional material design. Recently, a new paradigm has appeared where these instabilities are instead being utilized for high-performance applications. Multiple approaches such as heterogeneous gelation, capillary stresses, and confinement have been used to shape thin macroscopic elastic sheets. However, it remains a challenge to shape two-dimensional self-assembled monolayers at colloidal or molecular length scales. Here, we show the existence of a curvature instability that arises during the crystallization of finite-sized monolayer membranes of chiral colloidal rods. While the bulk of the membrane crystallizes, its edge remains fluid like and exhibits chiral ordering. The resulting internal stresses cause the flat membrane to buckle macroscopically and wrinkle locally. Our results demonstrate an alternate pathway based on intrinsic stresses instead of the usual external ones to assemble non-Euclidean sheets at the colloidal length scale.

14.
Sci Rep ; 6: 32313, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27577927

RESUMO

We report the discovery of a thermodynamically stable line hexatic (N + 6) phase in a three-dimensional (3D) system made up of self-assembled polymer-like micelles of amphiphilic molecules. The experimentally observed phase transition sequence nematic (N) N + 6 two-dimensional hexagonal (2D-H) is in good agreement with the theoretical predictions. Further, the present study also brings to light the effect of chirality on the N + 6 phase. In the chiral N + 6 phase the bond-orientational order within each "polymer" bundle is found to be twisted about an axis parallel to the average polymer direction. This structure is consistent with the theoretically envisaged Moiré state, thereby providing the first experimental demonstration of the Moiré structure. In addition to confirming the predictions of fundamental theories of two-dimensional melting, these results are relevant in a variety of situations in chemistry, physics and biology, where parallel packing of polymer-like objects are encountered.

15.
J Phys Chem B ; 120(1): 164-72, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26687052

RESUMO

The interdigitated phase of the lipid bilayer results when acyl chains from opposing monolayers fully interpenetrate such that the terminal methyl groups of the respective lipid chains are located at the interfacial region on the opposite sides of the bilayer. Usually, chain interdigitation is not encountered in a symmetric chain phosphatidylcholine (PC) membrane but can be induced under certain special conditions. In this article, we elucidate the contribution of small amphiphatic molecules in altering the physical properties of a symmetric chain PC bilayer membrane, which results in acyl chain interdigitation. Using small-angle X-ray scattering (SAXS), we have carried out a systematic investigation of the physical interactions of three naphthalene derivatives containing hydroxyl groups: ß-naphthol, 2,3-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene, with dipalmitoylphosphatidylcholine (DPPC) bilayers. On the basis of the diffraction patterns, we have determined the temperature-composition phase diagrams of these binary mixtures. The present study not only enables us to gain insight into the role played by small molecules in altering the packing arrangement of the acyl chains of the constituting PC lipids of the bilayer but also brings to light some important features that have not yet been reported hitherto. One such feature is the stabilization of the enigmatic asymmetric ripple phase over a wide temperature and concentration range. The results presented here strongly point toward a clear correlation between chain interdigitation and the stability of the ripple phase.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Naftalenos/química , Estrutura Molecular
16.
Artigo em Inglês | MEDLINE | ID: mdl-23944470

RESUMO

We have studied the influence of two structurally isomeric organic salts, namely, 2-sodium-3-hydroxy naphthoate (SHN) and 1-sodium-2-hydroxy naphthoate (SHN1), on the phase behavior of concentrated aqueous solutions of the cationic surfactant cetylpyridinium chloride (CPC). Partial phase diagrams of the two systems have been constructed using polarizing optical microscopy and x-ray diffraction techniques. A variety of intermediate phases is seen in both systems for a range of salt concentrations. The CPC-SHN-water system exhibits the rhombohedral and tetragonal mesh phases in addition to the random mesh phase, whereas the CPC-SHN1-water system shows only the tetragonal and random mesh phases. The CPC-SHN-water system also exhibits two nematic phases consisting of cylindrical and disk-like micelles at relatively low and high salt concentrations, respectively. These results show that the concentration of the strongly bound counterion provided by the organic salt can be used as a control parameter to tune the stability of different intermediate phases in amphiphile-water systems.

17.
Proc Natl Acad Sci U S A ; 110(37): 14849-54, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23986497

RESUMO

We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T(K)°) in weakly swollen isotropic (Li) and lamellar (La) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase Lc melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T(K)°, which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the Li phase to an La phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the Li phase constructed in the parameter space of shear rate (γ) vs. temperature exhibits Li → Lc and Li → La transitions above the equilibrium crystallization temperature T(K)°, in addition to the irreversible shear-driven nucleation of Lc in the Li phase below T(K)°. In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.

18.
J Colloid Interface Sci ; 402: 151-6, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23643253

RESUMO

We have studied the effect of KBr on the electrostatically stabilized fluid lamellar phase of the ionic surfactant, C12-alkenylsuccinic acid (ASA). Three distinct regimes are found in the temperature - salt phase diagram of this system at a fixed ASA concentration of 20 wt.%. A collapsed lamellar phase is formed in the low-salt regime, which exhibits an unbinding transition into uncorrelated bilayers on heating. In the intermediate salt regime the opposite trend is observed, with the uncorrelated bilayers present at low temperatures ordering into a lamellar phase at higher temperatures. As far as we are aware, this is the first report of such an ordering transition of uncorrelated bilayers. In the high salt regime, the topology of the bilayer changes, resulting in a lamellar-sponge transition. All the three transitions are reversible and the corresponding transition temperatures decrease with increasing salt concentration. The occurrence of these transitions in a single amphiphile system demonstrates the strong influence of salt on the bilayer elastic moduli as well as on the inter-bilayer interactions in the present system.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(5 Pt 1): 051701, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23004773

RESUMO

The structure of the ripple phase of phospholipid membranes remains poorly understood in spite of a large number of theoretical studies, with many experimentally established structural features of this phase unaccounted for. In this article we present a phenomenological theory of phase transitions in single- and two-component achiral lipid membranes in terms of two coupled order parameters: a scalar order parameter describing lipid chain melting, and a vector order parameter describing the tilt of the hydrocarbon chains below the chain-melting transition. This model reproduces all the salient structural features of the ripple phase, providing a unified description of the phase diagram and microstructure. In addition, it predicts a variant of this phase that does not seem to have been experimentally observed. Using this model we have calculated generic phase diagrams of two-component membranes. We have also determined the phase diagram of a two-component lipid membrane from x-ray diffraction studies on aligned multilayers. This phase diagram is found to be in good agreement with that calculated from the model.


Assuntos
Membrana Celular/química , Modelos Moleculares , Fosfolipídeos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Termodinâmica
20.
Biochim Biophys Acta ; 1818(11): 2486-93, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22750222

RESUMO

The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(ß) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Bicamadas Lipídicas , Tocoferóis/química , Elétrons , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...