Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 14(6): 1193-1219, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812360

RESUMO

The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and ß-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 µM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 µM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aß self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Barreira Hematoencefálica/metabolismo , Inibidores da Colinesterase/química , Aminas , Relação Estrutura-Atividade , Camundongos Endogâmicos C57BL , Escopolamina/farmacologia , Escopolamina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular
2.
Drug Dev Res ; 84(1): 121-140, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461610

RESUMO

Berberrubine is a naturally occurring isoquinoline alkaloid and a bioactive metabolite of berberine. Berberine exhibits a wide range of pharmacological activities, including cholinesterase inhibition. The cholinesterase inhibitors provide symptomatic treatment for Alzheimer's disease; however, multitarget-directed ligands have the potential as disease-modifying therapeutics. Herein, we prepared a series of C9-substituted berberrubine derivatives intending to discover dual cholinesterase and beta-site amyloid-precursor protein cleaving enzyme 1 (BACE-1) inhibitors. Most synthesized derivatives possessed balanced dual inhibition (AChE and BChE) activity in the submicromolar range and a moderate inhibition against BACE-1. Two most active ester derivatives, 12a and 11d, display inhibition of AChE, BChE, and BACE-1. The 3-methoxybenzoyl ester derivative, 12a, inhibits electric eel acetylcholinesterase (EeAChE), equine serum butyrylcholinesterase (eqBChE), and human hBACE-1 with IC50 values of 0.5, 4.3, and 11.9 µM, respectively and excellent BBB permeability (Pe = 8 × 10-6 cm/s). The ester derivative 12a is metabolically unstable; however, its ether analog 13 is stable in HLM and exhibits inhibition of AChE, BChE, and BACE-1 with IC50 values of 0.44, 3.8, and 17.9 µM, respectively. The ether analog also inhibits self-aggregation of Aß and crosses BBB (Pe = 7.3 × 10-6 cm/s). Administration of 13 at 5 mg/kg (iv) in Wistar rats showed excellent plasma exposure with AUC0-∞ of 28,834 ng min/ml. In conclusion, the multitargeted berberrubine ether derivative 13 is CNS permeable and has good ADME properties.


Assuntos
Doença de Alzheimer , Berberina , Ratos , Animais , Cavalos , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Berberina/farmacologia , Relação Estrutura-Atividade , Éter/uso terapêutico , Simulação de Acoplamento Molecular , Ratos Wistar , Inibidores da Colinesterase , Etil-Éteres/uso terapêutico , Éteres/uso terapêutico , Estrutura Molecular
3.
J Med Chem ; 65(2): 893-921, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33539089

RESUMO

Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.


Assuntos
Antivirais/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Viroses/tratamento farmacológico , COVID-19/virologia , Aprovação de Drogas/legislação & jurisprudência , Reposicionamento de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2/isolamento & purificação , Estados Unidos , United States Food and Drug Administration , Tratamento Farmacológico da COVID-19
4.
Phytomedicine ; 91: 153659, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34332286

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a complex neurodegenerative disease with no availability of disease-modifying therapeutics. The complex etiology and recent failures in clinical trials indicate the need for multitargeted agents. PURPOSE: The present study aims to discover new plant-based multitargeted anti-AD leads. METHODS: A library of plant extracts was screened for inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and beta-site amyloid precursor protein cleaving enzyme 1 (BACE-1). The secondary metabolites of active extracts were also tested, followed by enzyme-kinetics and molecular modeling to understand the mechanism of inhibition. The most active extract was investigated for in-vivo anti-dementia activity in behavioral mice models. RESULTS: Among the library of 105 extracts, Woodfordia fruticosa (SBE-80) and Bergenia ciliata (SBE-65) extracts displayed significant inhibition of all three enzymes. Gallic acid, one of the constituents of both plants, shows moderate inhibition of AChE and BACE-1. Catechin-3-O-gallate (CG), another constituent of SBE-65, inhibits EeAChE, rHuAChE, and eqBChE with IC50's of 29.9, 1.77, and 8.4 µM, respectively; along with a mild-inhibition of BACE-1. Ellagic acid, the constituent of SBE-80, inhibits BACE-1 with an IC50 value of 16 µM. The W. fruticosa extract SBE-80 at the dose of 25 mg/kg QD × 9 (PO) displayed memory-enhancing activity in Morris Water Maze and Passive Avoidance Test in Swiss albino mice. Treatment with SBE-80 also inhibits AChE in-vivo; whereas, a non-significant decrease in the serum TBARS was observed. CONCLUSION: W. fruticosa is identified for the first time as an anti-AD lead candidate. The in-vitro and in-vivo data presented herein and the documented safety profile of W. fruticosa indicate its strong potential for preclinical development as a botanical drug for dementia/AD.


Assuntos
Doença de Alzheimer , Extratos Vegetais , Woodfordia , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Animais , Butirilcolinesterase , Inibidores da Colinesterase/farmacologia , Camundongos , Extratos Vegetais/farmacologia , Woodfordia/química
5.
Curr Top Med Chem ; 20(12): 1124-1135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32209043

RESUMO

Bryostatins are complex macrolactones isolated from marine organisms Bryozoan Bugula neritina. They are potent modulators of protein kinase C isozymes (PKCα: ki = 1.3-188 nM), and are one of the most extensively investigated marine natural products in clinical trials. Although ~21 natural bryostatins have been isolated, however only bryostatin-1 (1) has received much interest among medicinal chemists and clinicians. The structure-activity relationship of bryostatins has been well established, with the identification of key pharmacophoric features important for PKC modulation. The low natural abundance and the long synthetic route have prompted medicinal chemists to come-up with simplified analogs. Bryostatin skeleton comprises three pyran rings connected to each other to form a macrocyclic lactone. The simplest analog 27 contains only one pyran, which is also able to modulate the PKCα activity; however, the cyclic framework appears to be essential for the desired level of potency. Another simplified analog 17 ("picolog") exhibited potent and in-vivo efficacy against lymphoma. Bryostatin-1 (1) has shown an acceptable intravenous pharmacokinetic profile in mice and displayed promising in-vivo efficacy in mice models of various cancers and Alzheimer's disease. Bryostatin-1 was investigated in numerous Phase I/II oncology clinical trials; it has shown minimal effect as a single agent, however, provided encouraging results in combination with other chemotherapy agents. FDA has granted orphan drug status to bryostatin-1 in combination with paclitaxel for esophageal cancer. Bryostatin-1 has also received orphan drug status for fragile X syndrome. Bryostatin-1 was also investigated in clinical studies for Alzheimer's disease and HIV infection. In a nutshell, the natural as well as synthetic bryostatins have generated a strong hope to emerge as treatment for cancer along with many other diseases.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Briostatinas/farmacologia , Neoplasias/tratamento farmacológico , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Briostatinas/química , Briostatinas/isolamento & purificação , Briozoários/química , Humanos , Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação
6.
J Photochem Photobiol B ; 183: 258-265, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29747145

RESUMO

Rhodiola imbricata is a rare medicinal herb well-known for its adaptogenic and antioxidant properties due to the presence of a diverse array of secondary metabolites, including phenylethanoids and phenylpropanoids. These secondary metabolites are generating considerable interest due to their potential applications in pharmaceutical and nutraceutical industries. The present study investigated the influence of light quality on growth, production of industrially important secondary metabolites and antioxidant activity in callus cultures of Rhodiola imbricata. Callus cultures of Rhodiola imbricata were established under different light conditions: 100% red, 100% blue, 100% green, RGB (40% red: 40% green: 20% blue) and 100% white (control). The results showed that the callus cultures grown under red light accumulated maximum amount of biomass (7.43 g/l) on day 21 of culture, as compared to other light conditions. Maximum specific growth rate (0.126 days-1) and doubling time (132.66 h) was observed in callus cultures grown under red light. Reverse phase-high performance liquid chromatographic (RP-HPLC) analysis revealed that the callus cultures exposed to blue light accumulated maximum amount of Salidroside (3.12 mg/g DW) on day 21 of culture, as compared to other light conditions. UV-Vis spectrophotometric analysis showed that the callus cultures exposed to blue light accumulated maximum amount of total phenolics (11.84 mg CHA/g DW) and total flavonoids (5.53 mg RE/g DW), as compared to other light conditions. Additionally, callus cultures grown under blue light displayed enhanced DPPH free radical scavenging activity (53.50%). Callus cultures grown under different light conditions showed no significant difference in ascorbic acid content (11.05-13.90 mg/g DW) and total antioxidant capacity (27.37-30.17 mg QE/g DW). The correlation analysis showed a positive correlation between total phenolic content and DPPH free radical scavenging activity in callus cultures (r = 0.85). Taken together, these results demonstrate the remarkable potential of light quality on biomass accumulation and production of industrially important secondary metabolites in callus cultures of Rhodiola imbricata. This study will open new avenues and perspectives towards abiotic elicitation strategies for sustainable growth and enhanced production of bioactive compounds in in-vitro cultures of Rhodiola imbricata.


Assuntos
Antioxidantes/metabolismo , Flavonoides/metabolismo , Fenóis/metabolismo , Rhodiola/metabolismo , Antioxidantes/química , Ácido Ascórbico/análise , Biomassa , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Flavonoides/análise , Luz , Fenóis/análise , Células Vegetais/metabolismo , Rhodiola/citologia , Rhodiola/crescimento & desenvolvimento , Rhodiola/efeitos da radiação , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...