Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Allergy Clin Immunol ; 150(6): 1476-1485.e4, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35839842

RESUMO

BACKGROUND: Circulating IgE and subsequent severe allergic reactions to peanut are sustained and propagated by recall of peanut allergen-specific memory B cells. OBJECTIVES: This study aimed to determine whether targeting mouse and human CD22 on peanut-specific memory B cells induces tolerance to peanut allergens. METHODS: Siglec-engaging tolerance-inducing antigenic liposomes (STALs) codisplaying peanut allergens (Ara h 1, Ara h 2, or Ara h 3) and high-affinity CD22 ligand (CD22L-STALs) were employed in various mouse models (BALB/cJ, C57BL/6, human CD22 transgenic, and NSG) of peanut allergy. To investigate memory B cells, a conferred memory model was used in which splenocytes from peanut-sensitized mice were transferred into naive animals. Reconstituted mice received either CD22L-STALs or an immunogenic liposome control, followed by a peanut allergen boost and later a challenge with individual peanut allergens. To assess the effects of CD22L-STALs on human B cells, PBMCs were injected into NSG mice, followed by administration of human CD22L-STALs (hCD22L-STALs) and later a whole peanut extract boost. Blood was collected to quantify WPE- and Ara h 1-, 2-, and 3-specific immunoglobulins. RESULTS: Mouse CD22L-STALs (mCD22L-STALs) significantly suppressed systemic memory to Ara h 1, Ara h 2, and Ara h 3 in BALB/cJ and C57BL/6 mice, as demonstrated by reduced allergen-specific IgE, IgG1, and anaphylaxis on challenge. Importantly, 2 doses of mCD22L-STALs led to prolonged tolerance for at least 3 months. hCD22L-STALs displayed similar suppression in mice expressing human CD22 on B cells. Finally, human B cells were tolerized in vivo in NSG mice by hCD22L-STALs. CONCLUSIONS: Antigen-specific exploitation of CD22 on memory B cells can induce systemic immune tolerance.


Assuntos
Alérgenos , Arachis , Humanos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Células B de Memória , Tolerância Imunológica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico
2.
J Control Release ; 329: 774-781, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038448

RESUMO

Immune responses against polyethylene glycol (PEG) can lead to the rapid clearance of PEGylated drugs and are associated with increased risk of serious adverse events such as infusion reactions and anaphylaxis. Although select PEGylated therapeutics can induce anti-PEG antibodies (APA), there is currently no readily deployable strategy to mitigate their negative effects. Given the large number of PEGylated therapeutics that are either FDA-approved or in clinical development, methods that suppress APA induction to ensure the safety and efficacy of PEGylated drugs in patients would be a valuable clinical tool. We previously showed that infusion of high molecular weight (MW) free PEG can safely and effectively restore the circulation of PEG liposomes in animals with high pre-existing titers of APA, without stimulating additional APA production. Here, we explored the effectiveness of prophylaxis with free PEG or tolerogenic PEGylated liposomes as a strategy to reduce the amount of APA induced by subsequently administered PEGylated liposomes. Surprisingly, we found that a single administration of free PEG alone was capable of markedly reducing the APA response to PEG-liposomes for ~2 months; the effectiveness was comparable to, and frequently exceeded, interventions with different tolerogenic PEG-liposomes. These results support further investigations of free PEG prophylaxis as a potential strategy to ameliorate the APA response to sensitizing PEGylated therapeutics.


Assuntos
Lipossomos , Polietilenoglicóis , Animais , Humanos , Camundongos
3.
J Vis Exp ; (140)2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30417864

RESUMO

Antibody responses provide critical protective immunity to a wide array of pathogens. There remains a high interest in generating robust antibodies for vaccination as well as understand how pathogenic antibody responses develop in allergies and autoimmune disease. Generating robust antigen-specific antibody responses is not always trivial. In mouse models, it often requires multiple rounds of immunizations with adjuvant that leads to a great deal of variability in the levels of induced antibodies. One example is in mouse models of peanut allergies where more robust and reproducible models that minimize mouse numbers and the use of adjuvant would be beneficial. Presented here is a highly reproducible mouse model of peanut allergy anaphylaxis. This new model relies on two key factors: (1) antigen-specific splenocytes are adoptively transferred from a peanut-sensitized mouse into a naïve recipient mouse, normalizing the number of antigen-specific memory B- and T-cells across a large number of mice; and (2) recipient mice are subsequently boosted with a strong multivalent immunogen in the form of liposomal nanoparticles displaying the major peanut allergen (Ara h 2). The major advantage of this model is its reproducibility, which ultimately lowers the number of animals used in each study, while minimizing the number of animals receiving multiple injections of adjuvant. The modular assembly of these immunogenic liposomes provides relatively facile adaptability to other allergic or autoimmune models that involve pathogenic antibodies.


Assuntos
Anafilaxia/imunologia , Hipersensibilidade Alimentar/imunologia , Lipossomos/imunologia , Alérgenos , Animais , Arachis , Feminino , Humanos , Imunização , Imunoglobulina E/imunologia , Camundongos , Nanopartículas , Hipersensibilidade a Amendoim/imunologia , Reprodutibilidade dos Testes , Linfócitos T/imunologia
4.
Vaccine ; 30(50): 7292-9, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23022399

RESUMO

In this study, we demonstrate a simple strategy for enhanced immune response using a two-component dendritic cell (DC) targeted antigen delivery system. One component consists of a recombinant bifunctional fusion protein (bfFp) used for DC targeting, whereas, the other component is made of biotinylated PLGA nanoparticles that encapsulate the antigen. The fusion protein (bfFp) made of a truncated core-streptavidin fused to anti-DEC-205 single chain antibody (scFv) was mixed with ovalbumin-loaded biotinylated NPs that were formulated using biotin-PEG (2000)-PLGA, and the combination, bfFp functionalized NPs was used for DC targeted antigen delivery. In vitro DC uptake studies revealed a 2-fold higher receptor-mediated uptake of bfFp functionalized NPs when compared to non-targeted NPs. Immunization of the mice with the bfFp functionalized NPs in conjunction with DC maturation stimulus (anti-CD40 mAb) enhanced OVA-specific IgG and IgG subclass responses. Splenocytes of these mice secreted significantly higher levels of Th1 (IFN-γ and IL-2) cytokines upon ex vivo restimulation with OVA. The promising outcomes of the bfFp functionalized DC targeted system support its use as a versatile vaccine delivery system for the design of monovalent or polyvalent vaccines.


Assuntos
Antígenos/imunologia , Antígenos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Portadores de Fármacos/metabolismo , Nanopartículas , Animais , Citocinas/metabolismo , Imunoglobulina G/sangue , Leucócitos Mononucleares/imunologia , Camundongos , Ovalbumina/imunologia , Ovalbumina/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Baço/imunologia
5.
Mol Pharm ; 9(4): 946-56, 2012 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-22356166

RESUMO

This work investigates the formulation and in vivo efficacy of dendritic cell (DC) targeted plasmid DNA loaded biotinylated chitosan nanoparticles for nasal immunization against nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) as antigen. The induction of antigen-specific mucosal and systemic immune response at the site of virus entry is a major challenge for vaccine design. Here, we designed a strategy for noninvasive receptor mediated gene delivery to nasal resident DCs. The pDNA loaded biotinylated chitosan nanoparticles were prepared using a complex coacervation process and characterized for size, shape, surface charge, plasmid DNA loading and protection against nuclease digestion. The pDNA loaded biotinylated chitosan nanoparticles were targeted with bifunctional fusion protein (bfFp) vector for achieving DC selective targeting. The bfFp is a recombinant fusion protein consisting of truncated core-streptavidin fused with anti-DEC-205 single chain antibody (scFv). The core-streptavidin arm of fusion protein binds with biotinylated nanoparticles, while anti-DEC-205 scFv imparts targeting specificity to DC DEC-205 receptor. We demonstrate that intranasal administration of bfFp targeted formulations along with anti-CD40 DC maturation stimuli enhanced magnitude of mucosal IgA as well as systemic IgG against N protein. The strategy led to the detection of augmented levels of N protein specific systemic IgG and nasal IgA antibodies. However, following intranasal delivery of naked pDNA no mucosal and systemic immune responses were detected. A parallel comparison of targeted formulations using intramuscular and intranasal routes showed that the intramuscular route is superior for induction of systemic IgG responses compared with the intranasal route. Our results suggest that targeted pDNA delivery through a noninvasive intranasal route can be a strategy for designing low-dose vaccines.


Assuntos
Quitosana/química , Células Dendríticas/metabolismo , Nanopartículas/química , Proteínas do Nucleocapsídeo/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Feminino , Imunidade Humoral/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...